

David Ellis

Candidate No:

COGS Final Year Project
Computer Science and Artificial Intelligence

Supervisor: Ian Wakeman

May 2002

An Intrusion Detection System Model for Web Servers
using Artificial Neural Networks

Statement of Originality

This report is submitted as part requirement for the degree of Computer Science and Artificial
Intelligence at the University of Sussex. It is the product of my own labour except where

indicated in the text. The report may be freely copied and distributed provided the source is
acknowledged.

Signed:

1 Acknowledgements

Thanks to Ian Wakeman for his thoughtful guidance and excellent supervision throughout the
project.

Thank you to Gavin Foster for pointers regarding the data mining aspects of the project.

Thanks for the Schmoo team for the data from the DEFCON CCTF competition.

Thanks to the Nessus team for the use of their vulnerability scanner.

Thanks to Geoff Davies from ISEC (at the innovation center) for the pointers he gave. As
well as the kind offer of trace data for the project.

Thank you Danielle Daugan and Caroline Auric for their help with the statistics work.

Thank you to Sampsa Sojaka for advice and inspiration throughout the project.

2 Summary

This project investigates the field of Intrusion Detection. In particular it looks at attacks
against the Web Server, which arrive over the HTTP protocol. After reading about a number
of exploitable programs which typically reside on a Web Server an interesting observation
was made, it seems that the URL of an attack is very different from that of a normal request.
With this in mind, an appropriate representation of the URL string was formed and a number
of Analysis techniques were investigated.

A framework with which to carry out the investigation within was designed and
implemented. It provides us with an environment for testing a variety of techniques in order
to distinguish between a normal URL and an attack. The framework consists of two main
sections, the Event Engine and the Analysis Engine.

The Event Engine provides us with a way to read data into the system and fire appropriate
events on the introduction of and analysis of data. Three such readers were implemented, a
Packet Sniffer which reads raw data from the network interface or appropriate trace file, a
Proxy Server which reads from a TCP/IP socket and a reader which reads from a log file
format.

The Analysis Engine provides a way to analyze the data and pass the results of the analysis
back to the Event Engine. Several types of Neural Network were incorporated into the
system. Including a Multi-Layer Perceptron (MLP) implemented with Back Propagation and
a Genetic Algorithm as training algorithms. As well as an unsupervised Neural Network
implementing Sangas rule for performing PCA on the data, the K-Nearest Neighbours
algorithm was used here to perform the final classification of the data. Other techniques that
were tested included the use of simple occurrences of important letter groups; such as vowels
and digits. Finally the investigation involved a look at recurrent Neural Networks namely the
Elman Network was investigated.

Each of the techniques was tested on a number of Web Sites each of which varied in the
complexity of the URL string. We ranged the sites from simple static web sites to highly
complex sites with database driven back-ends.

We found very promising results came from the use of MLP networks. The Neural Network
was capable of making highly accurate classifications of attacks and normal data. After
analysing the data further with PCA we discovered the ten Principle Components and found
they correlated well with the data we had, and gave us insight into the working of the Neural
Net. When plotting the PCA data in 2-dimensional space; we found a highly complex search
space that didn’t give much of a clue as to what was going on. Use of the K-Nearest
Neighbours algorithm revealed promising results, but were somewhat worse compared to the
MLP network. The final test that was applied was to attempt to use the PCA network as a
pre-processor for the MLP network, this failed miserably.

In conclusion we discuss the results found and the importance of the design of the URL
strings for the web site we are protecting. We re-iterate the success of the MLP Neural
Network at providing a highly accurate classification of attacks. Finally we discuss future
work in this area, in particular the use of a distributed architecture for the analysis, as well as
further work on the use of Recurrent Neural Nets.

Contents

Statement of Originality..3

1 Acknowledgements..4

2 Summary..5

3 Introduction...9

4 Requirements Specification ..11
4.1 Purpose ... 11
4.2 Scope ... 11
4.3 Assumptions and Dependencies ... 12
4.4 Use-Case Model Survey... 13

4.4.1 Collecting Training data.. 13
4.4.2 Training Phase ... 13
4.4.3 Starting Service ... 14
4.4.4 Updating parameters.. 14
4.4.5 Stopping Service.. 14
4.4.6 Normal user using web server... 15
4.4.7 Attacker attempting to abuse the system .. 15

4.5 Actor Survey .. 16
4.5.1 The System Administrator .. 16
4.5.2 Good User.. 16
4.5.3 Attacker ... 16

4.6 Requirements ... 17
4.6.1 Functional Requirements... 17
4.6.2 Non-Functional Requirements .. 17

4.6.2.1 Reliability... 18
4.6.2.2 Performance ... 18
4.6.2.3 Supportability .. 18
4.6.2.4 Scalability .. 18

4.6.3 Online User Documentation and Help System Requirements ... 18
4.6.4 Design Constraints .. 19
4.6.5 Component Libraries... 19
4.6.6 Interfaces ... 19

4.6.6.1 User Interfaces ... 19
4.6.6.2 Software Interfaces .. 19
4.6.6.3 Communications Interfaces... 19

5 System Architecture ..20
5.1 Overview... 20
5.2 WebIDS.EventEngine.. 22

5.2.1 Commentary .. 22
5.2.2 Static Structure .. 22
5.2.3 EvReader and implementations .. 23
5.2.4 EvTrSet .. 24
5.2.5 EvHTTPRequest.. 25
5.2.6 ParseHTTP javacc grammar ... 25

5.3 WebIDS.AnalysisEngine ... 26
5.3.1 Commentary .. 26
5.3.2 Static Structure .. 26
5.3.3 AeAnalyser interface and implementations.. 27
5.3.4 AeAnalyserMLPTrainer and implementations... 29
5.3.5 AeStats... 30

5.3.6 AeQueue...30
5.4 WebIDS main package.. 31

5.4.1 Commentary ...31
5.4.2 Static Structure ...31
5.4.3 WiComponentFactory..32
5.4.4 WiUtils ...32
5.4.5 WiLogFile ..33
5.4.6 WiOpenLive ...33
5.4.7 WiTrainEnv..33

5.5 Collaborations.. 34
5.5.1 The live system framework Sequence Diagram..34
5.5.2 The training system sequence diagram..35
5.5.3 The Multi-Layer Perceptron training algorithm framework ...36

6 Underlying Principles ...37
6.1 Motivation for Analysis Framework.. 37

6.1.1 Motivation for looking at Application Layer ..37
6.1.2 A closer look at the HTTP protocol...38
6.1.3 Developing the URL scanner...40

6.2 Multi Layer Perceptron (MLP) trained with Back Propagation and Genetic
Algorithms... 42

6.2.1 What is a MLP?..42
6.2.2 Training Algorithms for MLP Networks...43
6.2.3 Application of MLP’s to the problem domain ..45

6.3 Principle Component Analysis Networks.. 46
6.3.1 General discussion of PCA ..46
6.3.2 Associative Memories and Oja’s rule and Sangers rule..46
6.3.3 K-Nearest Neighbours algorithm...48
6.3.4 Application of PCA Networks to the problem domain...48

6.4 Recurrent Neural Networks ... 49
6.4.1 Discussion of Recurrent Neural Networks ..49
6.4.2 Elman Networks...49
6.4.3 Application of Recurrent Networks to the problem domain...50

7 Implementation and Testing...51
7.1.1 Commentary ...51
7.1.2 MLP Results...51

7.1.2.1 Site A – contains only static pages ..52
7.1.2.2 Site B – contains dynamic pages..54
7.1.2.3 Site C – contains dynamic pages..56
7.1.2.4 Site D – Contains dynamic data...58

7.1.3 GA versus Back Propagation...60
7.1.4 PCA using unsupervised Neural Nets Results ..62

7.1.4.1 PCA results plotted in 2-d space ..62
7.1.4.2 PCA results as bar chart of scores of first ten Principle Components65
7.1.4.3 PCA results – Application of 10 neareset neighbours in 10-D space67
7.1.4.4 PCA results as pre-processor for an MLP Neural Network ..68

7.1.5 Letter group occurrence analysis ...69
7.1.6 Recurrent Neural Net Results ..70
7.1.7 Deployment of a live system ...71

7.1.7.1 Commentary ...71
7.1.7.2 Packet Sniffer ...72
7.1.7.3 Application level firewall, Proxy Server ...73

8 Conclusion...74

9 References ...77

10 Appendices...79
10.1 Source Code ... 79

10.1.1 WebIDS version 2 – Final Version .. 79
10.1.1.1 WebIDS package ... 80
10.1.1.2 WebIDS.EventEngine package ... 86
10.1.1.3 WebIDS.EventEngine.ParseHTTP package ... 96
10.1.1.4 WebIDS.AnalysisEngine package .. 123

10.1.2 WebIDS version 1 – Original Version (uses session based analysis). 137
10.2 Literature Survey Research Comments by D.Ellis... 172

10.2.1 Security Exploits... 172
10.2.2 Intrusion Detection Systems... 174
10.2.3 Neural Network material .. 177
10.2.4 Computer Networks and Services.. 179

10.3 Excess Test data ... 180
10.3.1 Selected URLS and their classifications via the MLP network .. 180
10.3.2 Graph to show exploits being detected .. 181

10.4 Glossary .. 182
10.5 User Manual... 183

10.5.1 Installation .. 183
10.5.2 Configuring using the WiComponentFactory class... 183
10.5.3 Collecting the training data .. 184
10.5.4 Training... 184
10.5.5 Testing .. 184
10.5.6 Deploying ... 184

__

Page 9 of 184

3 Introduction

The accurate and timely identification of an intruder has become of paramount importance
over the past decade as the advent of the Internet has brought with it a new breed of
criminals. The importance of protecting your computer system from hackers has become
greatly increased as communication channels that are available both for the distribution of
malicious software, and expertises in exploitation of computer systems have opened up.

With the emergence of the World Wide Web many attackers have focused their attention on
the Web Server and its associated programs. This project hopes to address this problem.

Many existing systems that address the issue of Intrusion Detection tend to focus on attack
signatures. When someone discovers an exploit for some piece of software, traces of the
attack is left in log files. The Intrusion Detection System then looks for this “signature”.
There is an inherent problem with this model in that someone must manually update the
database of known signatures. Of course the benefit of the system is that it will accurately
identify known attacks every time. SNORT is such a system that uses this model [ids10].

Other models have included the use of rules for identifying attacks; these may focus their
effort over several attacks or indeed classes of attacks. Rule based systems include the Bro
system [ids6, ids5, ids8]. They are based on set of static rules which somebody decides
governs an attack, again these suffer from the problem of the signature-based systems, in that
they can only detect what they inherently know about already.

This project will attempt to address the problem presented by the previous two models by
using a model of anomaly detection [ids4, ids9, ids11]. The anomaly detection model will be
implemented using Neural Networks to analyze network traffic in real time as it passes into a
Web Server. The system will attempt to identify anomalous behavior on the system and take
some appropriate action.

Most Network Intrusion Detection Systems, where the network is analyzed rather than the
host, look at low level protocols such as IP/TCP UDP and ICMP. This project will take an
alternative approach; as it is believed that looking at these low level protocols does not
always give sufficient information in determining an attack. For this reason we focus our
attention on the application layer information in the hope that the semantic information
available when looking at this layer will provide a clearer picture as to the nature of the
packet. In particular we focus our attention on the HTTP protocol, the Web Server and the
attacks which are launched over it.

__

Page 10 of 184

The objectives of the project are as follows:

• Determine the requirements of an intrusion detection system. – The definition of
the intrusion detection must be clearly defined for this project. Characteristics of the
system must be defined, i.e. to keep a high false negative rate, to be fault tolerant
[ids2] etc.

• Evaluate the use of artificial neural networks within the problem domain. – The

use of artificial neural networks specifically in attacking the problem should be
addressed, drawing on both its advantages and disadvantages over rule-based or other
types of systems.

• Determine the most appropriate type of artificial neural network to use. – Many

types of artificial neural networks currently exist; some may be more suitable for the
problem than others. A detailed understanding of a number of artificial neural
networks should be acquired and the most appropriate applied to the task.

• Develop an intrusion detection system using the techniques that are found to be

best suited to the problem. – Implementation of a system will be attempted using the
techniques found most appropriate.

• Train and test the intrusion detection system using test data. – A suitable amount

of training data should be acquired and used to train and test the system.

• Test the system on unseen data. – A suitable amount of test data should be kept
back in order to test the system’s ability to recognize previously unseen attacks as
intrusive behavior. This will test the usefulness of the approach.

__

Page 11 of 184

4 Requirements Specification

4.1 Purpose

This document describes the requirements for a Neural Network based intrusion detection
system. The system will be installed on a perimeter firewall installation and will monitor
network traffic as it enters an internal network thus it will be a Network Intrusion Detection
System or NIDS. The system will use an Artificial Neural Network to analyze the data and
detect whether an intruder has attempted an attack. When the system raises the alarm the
network administrator for the network should be notified and can take applicable action if
necessary.

The system will employ an anomaly detection model [ids3, ids4] whereby the system is
trained on normal data, so that a model of the normal usage of the server is realized within
the weight matrix of the Neural Network. The system should then be capable of detecting
where parameters are outside this normal model thus detecting an intruder.

The very nature of an anomaly detection model implies that it give high accurate
identifications but will inherently suffer from high false positive identifications. This is
because a normal system becomes very difficult to define, without traces of every possible
user activity on the system. Ideally we would want the Neural Network to be capable of
generalizing over the input allowing us to train it on only a small percentage of the overall
search space.

We may find that the level of generalization differs with varying services offered on a
system. The system is more likely to generalize over sites that contain only static web pages.
More advanced pages with CGI scripts and complex database back-ends are expected to yield
less accurate results.

A perfect system would be one that could have a zero false positive and zero false negative
rates. However this is a difficult task when new attacks are discovered every day. The
system will thus focus on gaining a low false negative rate with a reasonable false positive
identification rate.

4.2 Scope
The system will be targeting the HTTP protocol on a World Wide Web Server. The System
should therefore be capable of detecting attacks on the Web Server itself as well as other CGI
programs installed on the system it should also be capable of detecting the exploitation of
miss-configured web servers. If there is enough time Denial of Service attack detection will
also be included.

The system will use three complexities of web application to test the capability of the system.
The system will first be tested on a data only site, where CGI programs aren’t in use, the
system should cope with this scenario the best. The system should then be tested with a more
complex site that has a simple form. This should be harder to detect intrusive behavior due to
the variation in parameters expressed in the query strings, which are not apparent in the static
model. Finally the system will be tested with a full-on e-commerce site with many CGI

__

Page 12 of 184

programs and high database access, this scenario requires a large generalization capability of
the system and is expected to yield the least accurate results.

4.3 Assumptions and Dependencies

The system will attempt to classify a particular HTTP request or an HTTP session on a Web
Server as normal or anomalous. However, if users are behind a Proxy Server, accurate
identifications of the session user may not be possible. Therefore for the purpose of this
project we must assume that a session from a single IP address is the session of a single user.

The HTTP protocol version 1.0 specifies that a single TCP connection will carry a single
HTTP message [n3]. HTTP/1.1 [n2] allows multiple messages over a single connection this
system will assume we are using the HTTP/1.0 protocol.

Fragmentation provides a powerful mechanism for bypassing Intrusion Detection Systems
[se7]. This system will assume these kinds of measures do not occur and that the received
packet has not been fragmented. This project will not implement re-assembly routines.

__

Page 13 of 184

4.4 Use-Case Model Survey

4.4.1 Collecting Training data

The system will come with a tool similar to tcpdump1. It will be told how to classify the
session and produce a dump file and put it into some directory corresponding to the correct
classification of the session.

Actors:

System Admin / Trainer

System Admin

1 1

Run dump program with
classification information

fig 4.1

4.4.2 Training Phase
The system will require a training phase in order to determine the correct weights for the neural network. This
training phase will require training data that is marked as normal or anomalous. This will allow the network to
adjust its weights via the use of a supervised learning algorithm to the correct values.

Actors:

System Admin/Trainer

System Admin

Start Training
Sequence

1 1

Build Training Data

«extends»

Record Weights

1

1

fig 4.1

1 See glossary for description

__

Page 14 of 184

4.4.3 Starting Service

The service will need to be started in order to begin its analysis of the network. Someone
with super user privileges only must carry out this task.

Actors:

System Admin

System Admin

1 1

Start System

fig 4.3

4.4.4 Updating parameters

Parameters will undoubtedly need changing within the system while it is still running live on
the network. Such parameters include weight matrix of the neural network and the threshold
value for informing the system administrator.

Actors:

System Admin

System Admin

1 1

Update System
parameters

fig 4.4

4.4.5 Stopping Service

The service will need to be stopped for various reasons while it is being used. Again only a
super user may do this.

System Admin

1 1

Stop System

fig 4.5

__

Page 15 of 184

4.4.6 Normal user using web server

During normal usage of the system, the system will be monitoring all network traffic bound
for the Web Server that the system is protecting. In the event of normal activity the system
should not respond at all and normal network service is expected. The system will keep the
analyser for this client in memory for 3 minutes, so later identification of anomalous behavior
is possible.

Actors:

Good User

Good User

Access Web Page

* 1

Intercept Network
Traffic

1

*

Analyse Packets

* *

Analyse traffic and take no action.
Keep the analyser in memory incase the
user re-establishes the session.

 fig 4.6

4.4.7 Attacker attempting to abuse the system

At some point an alarm will be raised the neural network classifies an attack as anomalous.
At this point the system admin is notified and invited to inspect the servers log files.

Actors:

System Admin
Attacker

Attacker

Access Web Page

* 1

Intercept Network
Traffic

1

*

Analyse Packets

* *

Analyse traffic and inform the
network administrator that
an attack may have occurred.

System Admin

* *

fig 4.7

__

Page 16 of 184

4.5 Actor Survey

4.5.1 The System Administrator

The system administrator is the person who looks after the system, and is responsible
for security on the system. They should be capable of determining the parameters of
their system under normal operation and be capable of identifying the signs of an
intruder.

4.5.2 Good User

This could be anyone who is using the web server that the system is protecting. They
are simply browsing web pages.

4.5.3 Attacker

This is anyone who is trying to disrupt the services offered by the server, or is trying
to gain access to the system illegitimately. This can include viruses or worm
programs such as Code Red as well as humans.

__

Page 17 of 184

4.6 Requirements

4.6.1 Functional Requirements

1. The system must be able to read HTTP messages from a variety of sources. These

must include raw network packets, log files and TCP/IP sockets.

2. The user will be able collect the necessary training data using an appropriate tool.

3. The user will be able to train the neural network based analysis engine.

4. The system must be able to be started and stopped by a privileged user of the system.

5. The system will be capable of learning the difference between a normal HTTP
message and an anomalous one.

6. The system is required to notify a system administrator when a sequence of events

that is likely to be an attack is encountered.

7. Statistics of the systems operation must be able to be collected for analysis and
review.

4.6.2 Non-Functional Requirements

1. The system must be easy to train for new users of the software. The mechanism for

training the system used must be easy to understand and allow someone with a
reasonable background in computer networks to capture the correct data and use the
training software to create an analysis engine for their network.

2. Users of the system must be able to start and stop the system easily.

3. Users of the system must be able to configure any parameters the system may use in

an easily manageable way.

__

Page 18 of 184

4.6.2.1 RELIABILITY

System administrators should not be required to re-start the system at any point unless they
wish to do so for maintenance reasons.

False negative identifications of attacks should be minimized heavily. This means a higher
focus on detecting false negatives should be given to the project rather than trying to reduce
false positives, although a minimized false positive rate is desirable as a secondary concern.

Intrusion Detection Systems are often themselves the target for attacks [se7], so the system
should attempt to resist subversion [ids2]. So a careful, security conscious view to the
development is necessary.

4.6.2.2 PERFORMANCE
Packets must be captured fast enough to enable real-time analysis of the data, and a system
administrator should be notified as soon as possible.

When the service becomes slow due to heavy traffic, the system should not affect the
performance of the rest of network [ids2].

The system should express a high degree of tolerance to internal faults and external faults
with the system itself as well as its host system.

4.6.2.3 SUPPORTABILITY
Dynamic configuration of the system will allow the network administrators to add a different
weight matrix to the system with minimal disruption to the service, and without disrupting
any other services on the network.

4.6.2.4 SCALABILITY
Scalability is not really an issue in this project, however thought will be given to making this
or future system able to scale up to larger identification tasks.

4.6.3 Online User Documentation and Help System Requirements

The systems API will be generated using the java documentation generator, javadoc. This
will enable other programmers to develop the system further. In addition there will be a full
maintenance and user manual available in html and on paper.

__

Page 19 of 184

4.6.4 Design Constraints

The Java programming language will be used to develop the system, initially for the Linux
operating system.

JPCap must be used to provide access to the libpcap c library as well as the raw sockets API.
For JPCap to work libpcap must also be installed on the system.

4.6.5 Component Libraries

The JPCap library is required to implement the system. JPCap is a Java interface to the
UNIX library libpcap and the Windows library winpcap. The system will be built using this
library.

The Java SDK and its libraries will be required to implement the system.

4.6.6 Interfaces
4.6.6.1 USER INTERFACES

The user will be capable of connecting to the service in order to administer it. This will
include updating parameters, starting and stopping the service. This can be graphical or text
based.

The user must also be capable of training the network provided they have the data sets in the
correct place for the system to find them. This can again be text or graphical based.

4.6.6.2 SOFTWARE INTERFACES
The system will interface with the packet capture library JPCap to enable raw packet capture
and the raw sockets API.

The system will be implemented in the Java programming language and so its standard API
will be used.

4.6.6.3 COMMUNICATIONS INTERFACES
An Ethernet card must be installed on the machine that is running the software. With the
addition of JPCap the system will eavesdrop on the network in order to analyze its activity.

__

Page 20 of 184

5 System Architecture

5.1 Overview

This section describes the architecture of the software system forming part of this
investigation. The system has been developed as a framework allowing traces of varying
formats and varying analysis tools to be written, in order to investigate the problem
domain. Three sub systems have been constructed in order to logically divide the
structure.

The first is the Event Engine; this provides the system with the means to read from live
network interfaces/log files. The Event Engine framework will use Analysis Engine
components to analyze the network traffic. The Event Engine uses a JavaCC generated
parser to parse the HTTP packets that are read from raw network interfaces.

Secondly, the Analysis Engine, as previously mentioned provides a framework for the
analysis of the data. It provides a set of tools with which to investigate analytical
techniques used within in this project.

The final sub-system is the Main package; this contains a bunch of programs that use the
Event Engine and the Analysis Engine to bring the system together. It provides a live
system, conversion and dumping tools to parse raw TCP/IP packets for information and a
training environment for generating performance statistics. It also contains a hand
filtering tool used to hand filter packets into separate files.

Essentially we are creating a suite of tools that will collect, decode/encode, and analyze a
data set containing both normal data and attack data. The suite of tools is such that we
can configure it to read from a number of sources, encode the data in a number of ways
and analyze the data using a variety of techniques.

__

Page 21 of 184

The use of these tools flows as follows;

Dump system Training system Live System

Take traffic
from live

network/dump
files and
produce

training data.

Feed trained
weight matrix

into live
system.

Statistics Report containg error rates etc. Statistics Report containg error rates etc.

fig 5.1

Each of these tools will use parts from both the Event Engine and the Analysis Engine.
Each package collaborates with the following dependencies;

 fig 5.2

The Analysis Engine uses some of the event engine classes in order to analyze the data in
an implementation independent way. The Event Engine must be aware of the analyzer
that is used to analyze the network traffic and so this dependency also exists. Of course
the Main package WebIDS must be dependant on both the Analysis Engine and the Event
Engine for its operation.

__

Page 22 of 184

5.2 WebIDS.EventEngine

5.2.1 Commentary

The Event Engine package contains the functionality and logic with which to read HTTP
requests from some source in an independent manner, constructing an appropriate
representation for this source. This data is then simply passed up to the Analysis Engine
for analysis. The Event Engine will react accordingly to the analysis of the HTTP request
by taking appropriate action. The action that will be taken is dependant upon the
configuration of the system, i.e. whether log files or raw packets are being read.

5.2.2 Static Structure

fig 5.3

__

Page 23 of 184

5.2.3 EvReader and implementations

The EvReader interface provides the necessary interface with which to train and run the
system in a live state.

void addObserver(EvObserver obs)
 allows you to register an object as an observer, so that appropriate actions can
be taken when analysis has been conducted.

 void build(java.lang.String fname, EvTrSet tset)
 builds an internal representation of the resource corresponding to filename.

 void interruptTimer(long millis)
 allows the user to interrupt either of the two other operations.

 void run(java.lang.String fname, AeAnalyser analyser)
 runs the resource corresponding to filename in a live state.

 void setThreshold(double t)
 allows you to set the threshold for determining good and bad packets.

There are several implementations of this interface in the system each of which provides
the desired functionality whilst reading from a number of different sources.

EvReaderLogFile

This class is an implementation of the EvReader interface which can read HTTP requests
from apache log files. It builds the training set by reading the log files from disk.

EvReaderJPCap

This class implements the EvReader interface by using the packet capture library JPCap
which is a JNI interface to the infamous unix packet capture library libpcap. This reader
is an implementation of a Packet Sniffer therefore it allows the user of this reader to read
raw packets either Live on the network or from dump files.

EvReaderSocket

This class is an implementation of the EvReader interface which reads the HTTP requests
by listening on a socket. After valid analysis this class will forward the request onto the
web server. Therefore this class is acting as a Proxy Server.

EvReaderText

This class is an implementation of the EvReader interface which reads the HTTP requests
from the AeAnalyser dump file format. This is a comma delimited format.

__

Page 24 of 184

5.2.4 EvTrSet

The EvTrSet class contains a bunch of HTTPRequest objects. It provides methods to
access these objects in an iterative fashion. It also provides the method to convert these
objects into input vector representations.

 void add(EvHTTPRequest hm)
 adds an HTTP message to the t set.

 void addRandom(int count)
 generates a load of random HTTP requests.

 EvHTTPRequest get(int i)

 double[] input(int i)

 int size()

 EvTrSet splitSet(double prob)
 splits this training set up into two sets.

 double[] target(int i)

 java.lang.String toString()
 returns a string representation of the trset.

 void truncate(int ncount)
 truncates the input to size ncount

The EvTrSet class contains extra functions to enable manipulation of the training sets,
example of such functions are splitting the sets to implement cross validation, as well as
truncation, that removes any stored requests past the specified count.

__

Page 25 of 184

5.2.5 EvHTTPRequest

The EvHTTPRequest object represents an HTTP request; it should contain all the
information available to the original source. If the request was built from a raw packet,
then it should contain every part of the HTTP header as well as a destination/source IP
address etc. The EvReader objects build these objects from their own data files. They
can be added to EvTrSet’s in order to be used in analysis training or simply analyzed
individually.

java.lang.String getMethod()

 java.lang.String getURI()
 returns the uri string for this request.

 java.lang.String getVersion()

 double[] inputVector()
 This method constructs an input vector suitable for analysis by
the analysis engine.

 boolean isAttack()
 returns whether this packet is flagged as being an attack.

 java.lang.String key()

 void setAttack(boolean fl)
 sets whether the packet is an attack or not.

 void setMethod(java.lang.String m)
 allows a user of this class to set the method

 void setURI(java.lang.String uri)
 allows a user of this class to set the requesturi variable.

 void setVersion(java.lang.String vs)
 allows a user of this class to set the version variable

 java.lang.String toString()
 Turns this object into a string representation will be used when
dumping logs to disk etc.

5.2.6 ParseHTTP JavaCC grammar

This is not a java file, but a javacc file. It contains a grammar that is compliant with the
HTTP/1.1 RFC [n3].

This was a direct translation from the B.N.F. specified in the RFC. EvReader objects use this
parser to parse their HTTP requests and build EvHTTPRequest objects. The parser
constructs the packet retaining information such as the URL string, the request method, and
the header information.

__

Page 26 of 184

5.3 WebIDS.AnalysisEngine

5.3.1 Commentary

The Analysis Engine contains the logic for the analysis of the data provided by the Event
Engine. The Analysis Engine consists of an interface AeAnalyser, this interface is
implemented by five classes which perform some analysis of the data in order to classify the
HTTP request objects as attacks or not.

The Event Engine is provided with the result of the analysis and is prompted to take
appropriate action depending on the result of the analysis. The Analysis Engine is designed
upon the assumption that the AeAnalyser classes will require training, thus some form of
training algorithm must be implemented.

5.3.2 Static Structure

+analyse(in req : EvHTTPRequest) : double
+getName() : String
+getStats(in trset : EvTrSet, in thresh : double) : AeStats
+load(in filename : String)
+save(in fname : String)
+train(in trset : EvTrSet) : double

AnalysisEngine::AeAnalyser

+analyse(in req : EvHTTPRequest) : double
+getName() : String
+getStats(in trset : AeStats, in thresh : double) : AeStats
+load(in fname : String)
+save(in fname : String)
+train(in trset : EvTrSet) : double

AnalysisEngine::AeAnalyserDump

+analyse(in req : EvHTTPRequest) : double
+getName() : String
+getStats(in trset : AeStats, in thresh : double) : AeStats
+load(in fname : String)
+save(in fname : String)
+train(in trset : EvTrSet) : double

-m_inputlayer : double[]
-m_hiddenlayer : double[]
-m_outputlayer : double[]
-mw_in2hidden : double[]
-mw_hidden2out : double[][]
-m_trainer : AeMLPTrainer

AnalysisEngine::AeAnalyserMLP

+analyse(in req : EvHTTPRequest) : double
+getName() : String
+getStats(in trset : AeStats, in thresh : double) : AeStats
+load(in fname : String)
+save(in fname : String)
+train(in trset : EvTrSet) : double

-m_inputs : double[]
-m_outputs : double[]
-m_weights_in_out : double[][]

AnalysisEngine::AeAnalyserPCA

+analyse(in req : EvHTTPRequest) : double
+getName() : String
+getStats(in trset : AeStats, in thresh : double) : AeStats
+load(in fname : String)
+save(in fname : String)
+train(in trset : EvTrSet) : double

AnalysisEngine::AeAnalyerElman

AeAnalyser

AeAnalyser

AeAnalyser

AeAnalyser

-m_weights : double[][]
-m_fitness : double
-m_recomb : double
-m_mutrate : double
-m_eta : double

AnalysisEngine::AeWeightMatrix

+addRequest(in req : EvHTTPRequest)
+determineClass() : bool

-reqs : (EvHTTPRequest, double)[]
AnalysisEngine::AeQueue

EventEngine

+getCorrectness() : double
+getError() : double
+getFNRate() : double
+getFPRate() : double
+toCSV() : String
+toString() : String

AnalysisEngine::AeStats

1

*

1

*

1

*

+load(in fname : String)
+save(in fname : String)
+trainme(in net : AeAnalyserMLP, in trset : EvTrSet)

«interface»
AnalysisEngine::AeMLPTrainer

+load(in fname : String)
+save(in fname : String)
+trainme(in net : AeAnalyserMLP, in trset : EvTrSet)

AnalysisEngine::AeMLPTrainerBP

+load(in fname : String)
+save(in fname : String)
+trainme(in net : AeAnalyserMLP, in trset : EvTrSet)

AnalysisEngine::AeMLPTrainerGA

AeMLPTrainer AeMLPTrainer

+analyse(in req : EvHTTPRequest) : double
+getName() : String
+getStats(in trset : AeStats, in thresh : double) : AeStats
+load(in fname : String)
+save(in fname : String)
+train(in trset : EvTrSet) : double

AnalysisEngine::AeAnalyserGroupOcc

AeAnalyser

11

«uses»

fig 5.4

__

Page 27 of 184

5.3.3 AeAnalyser interface and implementations

The AeAnalyser interface provides the Analysis Engine framework with an independent way
for several data analysis techniques to be used by the Event Engine. AeAnalyser objects may
be registered with an EvReader, when a reader needs to analyze some data it will used its
registered object.

 double analyse(EvHTTPRequest httpreq)
 perform some analysis of this httpreq object.

 java.lang.String getName()

 AeStats getStats(EvTrSet trset, double threshold)

 void load(java.lang.String file)
 loads analysers internal structure from disk.

 void save(java.lang.String file)
 saves analysers internal structure to disk.

 double train(EvTrSet trset)
 train this analyser with this data.

There are five implementations of this interface used in this investigation;

AeAnalyserDump

This is an implementation of the AeAnalyser interface. It is simply designed to convert an
EvHTTPRequest object into a text representation in a custom log format for inspection later,
or simply for converting the data into a format that can be used at a later date.

AeAnalyserPCA

This class is an implementation of AeAnalyser which implements Principle Component
Analysis (Section 6.3). It logs the results of the PCA and then performs the K-Nearest
neighbors returning the class with the largest match. The PCA is implemented as an
unsupervised Neural Network using the Oja’s rule [nn3].

AeAnalyserMLP

This class is an implementation of AeAnalyser which implements a Multi-Layer Perceptron
Neural Network [nn3, nn0, nn4] (section 6.2). This Neural Network may be trained with a
number of algorithms and so contains an implementation of the interface AeMLPTrainer,
namely a back-propagation type algorithm and a Genetic Algorithm.

AeAnalyserGroupOcc

__

Page 28 of 184

This class implements the AeAnalyser interface with a simple analysis of the frequencies of
groups of letters within the URL string, i.e. the number of vowels or locator characters.

AeAnalyserElman

AeAnalyserElman is an implementation of the AeAnalyser which uses an Elman network
[nn1] (section 6.4.2). An Elman network is very similar to a MLP network except it has
minimal recurrent links. Therefore allowing it to find structure in time over all the requests it
has seen before.

Due to its similarity to MLP networks, the same Back Propagation and Genetic Algorithms
can be used to train it. The Back Propagation on an Elman network is called Back
Propagation through time [nn2].

__

Page 29 of 184

5.3.4 AeAnalyserMLPTrainer and implementations

AeMLPTrainer is an implementation of the design pattern Command [r1]. The trainme()
method in the interface passes in the training set as well as the network to be trained. It also
contains methods for loading and saving internal state if the training algorithm has any.

The an AeMLPTrainer implementation may be registered with an AeAnalyserMLP class and
when the train() method is called the trainme() method of the registered AeMLPTrainer
object is called.

void load(java.lang.String str)

 allows the user to load any internal state.
 void save(java.lang.String str)

 allows the user to save any internal state.
 void trainme(AeAnalyserMLP net, EvTrSet trset)

 given a neural net, will perform some kind of training function

There are currently two implementations of this interface;

AeMLPTrainerBP

This class implements the Back Propagation algorithm with a momentum term (section 6.6).

AeMLPTrainerGA

This class implements a two individual tournament selection Genetic Algorithm (section 6.6).

__

Page 30 of 184

5.3.5 AeStats

This object provides the users of this package with some statistics information in order to
determine the performance of the system. It contains information such as number of requests
gone through and how many have been misclassified as well as rates for false positive and
false negative identifications for later analysis.

 double getCorrectness()
 returns the correctness rate of the run being analyzed. For
example a perfect system would be 100%. If it failed on every
identification it would be 0% correct.

 double getError()
 returns the error normally as the sum of squares (section 6.6).

 double getFNRate()
 returns the percentage of false negative identifications.

 double getFPRate()
 returns the percentage of false positive identifications.

 java.lang.String toCSV(java.lang.String label)
 converts the stats into a CSV format with a label.

 java.lang.String toString()

5.3.6 AeQueue

AeQueue is an implementation of a priority queue, however if there is not enough space the
ones at the bottom are dropped. It used to determine the k-nearest neighbors (section 6.7).
The identification which is most prominent within the queue is chosen as the correct
identification for a new request. The score which a request is added with represents the
Euclidean distance between the request we are attempting to classify and another request in
the system already.

 void addRequest(EvHTTPRequest hr, double score)

 boolean determineClass()
 From the requests in the queue which class is in the majority.

__

Page 31 of 184

5.4 WebIDS main package

5.4.1 Commentary

The Main WebIDS package is the responsible for providing the interface and interaction to
the human user of the system, namely the system administrator. A suite of tools is provided
for training, tuning and experimenting with different settings as well as producing statistics
for analysis with other appropriate tools, of course the suite also comprises of a live system in
order to deploy the system in a production environment.

5.4.2 Static Structure

fig 5.5

__

Page 32 of 184

5.4.3 WiComponentFactory

This class is an instance of the Factory design pattern [r1]. It reads from configuration files
and allows the rest of the system to be built in an implementation independent way. It is also
an instance of the Singleton design pattern [r1].

static WiComponentFactory instance()

 AeAnalyser makeAnalyser()

 makes an AeAnalyser object.
 EvReader makeReader()

 makes a EvReader object

The methods makeAnalyser builds an AeAnalyser object according to the implementation
which it is currently configured to use. The makeReader method also builds an EvReader
according to the currently configuration settings.

5.4.4 WiUtils

This class provides a set of utilities for the entire system to use.
java.lang.Object arrayGrow(java.lang.Object a)

 makes an array double in size, keeping the class type etc.
 int countGroupOcc(java.lang.String xx, char[] group)

 double[] frequencyAnalysis(java.lang.String str)

 analyses a string looking at frequency of characters.
 void infect(double[][] infector, double[][] infectee,

double recomb, double mutationrate, double eta)
 infects one matrix with another.

 void initWeights(double[][] wts)
 randomly initialises weights in a matrix

 java.lang.String inputVectorToString(double[] ipvec)
 Simply prints out a double array representing an input vector.

static WiUtils instance()
 returns the single instance of this class.

 int[] randomArray(int max, int all)
 returns an array of max numbers picking from between 0 and
all. The array will contain no duplicates.

 java.lang.String randomString()
 returns a random array corresponding to a random string.

 double sigmoid(double x) implementation of the sigmoidal function 1/e(-x).

 double[] urlToIV(java.lang.String uri)
 given a url string converts it into a binary representation of a url
string.

__

Page 33 of 184

5.4.5 WiLogFile

This class represents a log file on the disk. When the constructor is called the filename of the
log file is stored. Sub-sequent writes and reads from the object refer to the file specified in
the constructor.

WiLogFile(java.lang.String fn)
 constructs a LogFile associated with a particular file.

 java.util.ArrayList readLog()
 reads the contents of the log into an ArrayList.

 void writeLog(java.lang.String message)
 writes a string to the log file.

5.4.6 WiOpenLive

This class provides a main method for the system to be opened in a live state. If we were
using the JPCap reader that would mean opening up the Ethernet card in promiscuous mode,
if it were a Proxy Server it would mean opening up the TCP/IP server. The
WiComponentFactory is used to create the EvReader objects and AeAnalyser objects.

 void buildFromDir(java.io.File dir)
 runs the m_reader to build the trset.

static void main(java.lang.String[] args)
 opens the interface live.

 void openLive(java.lang.String fname)
 opens the read live, with the file/dev given int he params..

 void runSet(java.lang.String dir)
 runs the reader on a directory..

5.4.7 WiTrainEnv

This class is the environment for training the AeAnalyser that is currently registered as the
default analyzer. It will build the training sets from the command line arguments, build the
training sets and call the train() method for the analyzer.

 void buildFromDir(java.io.File dir, EvTrSet trset)
 runs the m_reader to build the trset.

 EvTrSet buildSet(java.lang.String dir)
 builds a training set given a directory, reads up all the files in the
directory and parses them for dumps.

static void main(java.lang.String[] args)
 main method runs the trainer..

 void train(java.lang.String dir)
 trains the Analyser

__

Page 34 of 184

5.5 Collaborations

The main system will run in essentially two modes. The first is used to generate an
appropriate weight matrix for the Analysis Engine namely a Neural Network. The second
phase is to open up the system in a live state. Because the trace data and indeed the live
system will analyze data from a number of sources, it is necessary to implement the
EvReader interface a number of times in order to accommodate for the variety of data sources
being used. Equally the AeAnalyser interface will be implemented a number of times in
order to experiment with a number of different analysis techniques.

Because of the abstract nature of the systems framework these collaborations deal with the
interfaces used. All implementations will fit into this general framework.

5.5.1 The live system framework Sequence Diagram

 fig 5.6

Fig 5.6 shows the interaction between the main objects and interfaces within when the live
system is started. The Component factory builds both the AeAnalyser and EvReader classes
and provides the WiOpenLive class with a set of methods for opening a user specified
interface.

Of course the actual implementations of the EvReader and AeAnalyser classes are not shown
here due to their complexity. This diagram shows how the framework interacts, see the
Underlying Principles section (6) for the algorithms used within the framework.

__

Page 35 of 184

5.5.2 The training system sequence diagram

 fig 5.7

The training system is similar to the live system interaction except the WiTrainEnv retains
control after the EvReader object has read the necessary trace data. Notice also that the
EvReader is no longer used after this point. The training can then begin by repeatedly calling
train on the AeAnalyser object.

__

Page 36 of 184

5.5.3 The Multi-Layer Perceptron training algorithm framework

This is an implementation of the template design pattern. Which ever trainer is currently
registered with the AeAnalyserMLP object is called via its trainme() method.

__

Page 37 of 184

6 Underlying Principles

6.1 Motivation for Analysis Framework

6.1.1 Motivation for looking at Application Layer

Automatic identification of intrusive and malicious behavior on computer networks is
becoming an increasingly difficult task. Most existing systems use information available at
the lower level layers of the TCP/IP protocol suite such as IP, TCP/ICMP/UDP. This of
course gives these systems a great deal of power in identifying attacks on networks; IP
spoofing [ids8] TCP flooding and other similar attacks on the network and transport layers
may only be detected by inspecting this level of the protocol stack.

However when we take a look at attacks which occur at the application level we find there
may not be enough information available at the lower levels. TCP segments may look
completely normal whilst containing malicious code. This motivates the investigation of a
specific application in attempt to determine whether the semantic information available at the
application layer will give us more insight into the identification of the attack. For this
project the HTTP protocol will be used to investigate the implications of the approach.

Previously we mentioned the use of the Anomaly detection model [ids4, ids9, ids11]. This
model fits quite well when we use this approach to the analysis of the data. The normal
usage of the system can be modeled, by applying some statistical modeling technique and
breaches to this “normal” may be detected by determining whether the new data fits within
normal parameters.

__

Page 38 of 184

6.1.2 A closer look at the HTTP protocol

HTTP (Hyper Text Transfer Protocol) is now the most popular Internet service [n2]. The
increasing use of the Web has however encouraged its abuse. An increasing number of
exploits for the Web Server and its associated programs are being discovered every day.

We as system administrators can determine attempts to compromise our system normally by
simply inspecting our log files. It becomes very clear when we look at our “normal” traffic
that a particular request is not part of a normal user’s activity. Log files normally contain
information such as the request method, the URL and the response the web server gave.

If we take a look at some log entries for some normal web sites the point above is made clear;

Buildersdirect.co.uk

212.241.139.4 GET /default.asp?qtbid=5&qtcid=QL&qtqecid=49 200
212.241.139.4 GET /Brands/BuildersDirect/scripts/GenralUtility.js 200
212.241.139.4 GET /QuoterEngine/inc/stdlib.js 200
212.241.139.4 GET /QuoterEngine/inc/validate3.js 200
212.241.139.4 GET /default.asp?qtbid=5&qtcid=QL&qtqecid=49 200
192.168.0.22 POST /default.asp?qtbid=5&qtcid=QL&qtqecid=29 200

Fkellis.com

212.241.139.4 GET /fkellis/logo.gif 200
212.241.139.4 GET /fkellis/index.html 200
212.241.139.4 GET /fkellis/tap.jpg 200
212.241.139.4 GET /fkellis/about.html 200

These are a few requests made from the buildersdirect.co.uk and fkellis.com web servers
respectively. Let’s look at the information which logs like this give us;

Firstly they give us the IP address that the request came from; this is useful because we may
be able to tell where the request came from. Of course there are many ways to hide the origin
of the attack, by spoofing the IP Address [ids4] or going through a proxy, or simply using a
different machine from your own. Clues can be discovered from the IP Address; the Code
Red worm tends to attack hosts with very similar IP Addresses to the originating hosts, this
could give a clue as to the intent of the request. This avenue of investigation seems less
important in determining the presence of intrusive behavior as it tells us only the origin of the
attack.

Secondly let us look into the request type. Of course this is very important, are we using
GET, POST HEAD etc. This is an important piece of information to look at. However it
complicates the investigation somewhat and therefore the investigation will be restricted to
GET request types, most CGI attacks use GET anyway.

Thirdly the URL is given; this gives us a very large amount of information. It tells us the
resource that the request is asking for as well as any parameters that may be passed to the
resource identified by the URL. This gives an attacker access to a particular resource which
may use some code which is exploitable. We find that most attacks will use a carefully
crafted URL string in order to exploit security holes in the resource;

__

Page 39 of 184

Directory traversal attacks of various kinds are exploitable when a system does not apply the
correct permissions of the directory where their scripts are run. This allows an attacker to
traverse the directory structure, and execute commands of their choice. Attackers will use
these kinds of attacks in order to execute general purpose interpreters such as cmd.exe, bash,
csh, ksh etc; As well as to grab password files for cracking later.

 Examples of this are below;

GET /cgi-bin/PRN/../../../../../../../../WINNT/system32/ipconfig.exe HTTP/1.0
GET /sojourn.cgi?cat=../../../../../etc/password%00 HTTP/1.0
GET /a1stats/a1disp3.cgi?/../../../../../../etc/passwd HTTP/1.0

There are many variations on this kind of attack including replacing the / with the Unicode
equivalent, as the infamously insecure web server IIS implements a poor scanning facility for
this kind of attack. The Nimbda worm exploits many of these vulnerabilities;

GET /scripts/..%c1%1c../winnt/system32/cmd.exe?/c+dir HTTP/1.0
GET /_vti_bin/..%255c../..%255c../..%255c../winnt/system32/cmd.exe?/c+dir HTTP/1.0
GET /..%25%35%63../scripts/cmd.exe?/c+dir HTTP/1.0

Other attacks include buffer overflow attacks $x, where an attacker attempts to write arbitrary
code into the memory of some program, causing a stack/heap smash resulting in the
execution of arbitrary code. These kinds of attack are very obvious when we see them in a
log;

GET /default.ida?XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX%25u9090%25u6858%25ucbd3%25u7801%25u9090%25u6858%25uc
bd3%25u7801%25u9090%25u6858%25ucbd3%25u7801%25u9090%25u9090%25u8190%25u00c3%25u0003
%25u8b00%25u531b%25u53ff%25u0078%25u0000%25u00=a HTTP/1.0

We can instantly see by looking at the code red worm a few oddities that indicate its
malicious nature. The first and obvious thing to notice is the large number of X characters;
these are used to locate correct memory location to dump the rest of the code into the
exploited programs memory space. We also notice a largely abnormal number of Unicode
and hexadecimal characters which we don’t tend to see in the normal traffic. This is the
buffer overflow egg and contains machine instructions which will be executed if the exploit is
successful.

Other suspicious URL strings contain commands such as the UNIX “cat”, various redirects
and pipe characters (> |), such as this URL, this will return the contents of the password file;

GET /cgi-bin/simple/view_page?mv_arg=|cat%20/etc/passwd| HTTP/1.1

The final piece of information that the logs give us is the response code. The response code
expresses how the Web server dealt with the request. It is useful to know if people have been
searching about for files that don’t exist; or have successfully obtained files, so the response
code is useful for auditing after the attack has happened. However in the context of an early
warning system the response code is not known unless the system stores some state. This
makes the implementation over complicated and demands the passing of packets before
deciding whether they contain attacks or not.

__

Page 40 of 184

6.1.3 Developing the URL scanner

Now we have established the great significance of the URL string in the identification of
abnormal activity on the Web Server it becomes clear that we need some way to
automatically scan the URL for abnormal or malicious intent. The first thing that comes to
mind is the equality matching or some kind of more advanced pattern matching routine for
identifying known exploits. This kind of thing is fine and there is no reason why it should
not work; it in fact implements the misuse detection model [ids1, ids4].

One problem with this model is the maintenance of the signatures database. Of course new
vulnerabilities are discovered every day and the list will become larger and larger. This
increase in size will also bring about a decrease in speed as more patterns will need to be
checked.

This could potentially be solved by using some kind of complex function which can check
the URL string against a variety of patterns in one pass. Artificial Neural Networks provide a
solution. The issue of database maintenance can be solved trivially by implementing the
anomaly detection model [ids4, ids9, ids11] and defining the systems’ normal URL strings
and allowing the system to determine deviations from this normal.

The final problem to solve now is how to encode these strings into the Neural Network. The
discussion in section 6.2 outlined a few types of attack against a system. It was outlined how,
by eye, we can tell which URL string is malicious and which is not. So what do we see in the
attacks that we don’t see in the normal URL strings?

It is proposed that the indication of normal data is through its substrings. One websites’ set
of URLs seem to contain very similar sub strings within them. This leads on to the actual
frequency of each character occurring in the string.

One way to encode this would be to use zip encoding [$x]. This, however, would require
either a very large set of inputs or a lot of preprocessing on the data before it entered the
Neural Network. An alternative would be to encode the URL string as simply the normalized
frequencies of the characters within it. For example;

The string /index.html would look like this (omitting the characters that have zero values);

fig 6.1

The string for the code red worm looks like this again omitting zero valued characters;

/default.ida?XX
XXXXXXXXXXXX%25u9090%25u6858%25ucbd3%25u7801%25u9090%25u6858%25ucbd3%25u7801%25u909
0%25u6858%25ucbd3%25u7801%25u9090%25u9090%25u8190%25u00c3%25u0003%25u8b00%25u531b%2
5u53ff%25u0078%25u0000%25u00=a

__

Page 41 of 184

 fig 6.2

This encoding is accompanied with a binary encoding of the length of the string so for
example /index.html would also include in the encoding 00001010 on the end. A Neural
Network should be capable of using this information to build a statistical model of the system
using the provided information. This is the encoding and structure that will be used for the
rest of the investigation as it seems like a good representation of the data and hopefully will
provide us with high dispersion in the data sets that are used.

__

Page 42 of 184

6.2 Multi Layer Perceptron (MLP) trained with Back Propagation
and Genetic Algorithms

6.2.1 What is a MLP?

The Perceptron is a single unit pattern recognition machine invented in the 50’s by
Rosenblatt. He derived an algorithm for finding appropriate weights in a finite amount of
time such that any linearly separable pattern could be recognized [nn3]. The Multi-Layer
Perceptron (MLP) extends the original Perceptron by including a hidden layer of processing
units. The first layer of units feed into the second layer and second into the third layer of
processing elements. This new structure is capable of solving a problem which is non-
linearly separable [nn0, nn4, nn3]. The XOR problem is an example of a non-linearly
separable problem, the space cannot be divided by a single hyper-plane (line in two
dimensions), but requires a number of hyper-planes (see glossary).

A typical MLP network is shown fig 6.3, a bias is attached to layer which is set to 1. This
controls the point at which the sigmoid function is activated and its weight can be trained
along with the standard training procedure.

 fig 6.3

The output of a three layer network with d input units, m hidden units and c output units with
a bias node on the first and second layers can be expressed as;

 d

aj = g(∑ ּשji(1) xi + ּשj0(1)) (eq 1).

i=1

Where aj is the input to the hidden unit j, ּשji is the weight between the ith input unit and jth
hidden unit, and xi is the input from the ith input unit. The extra term ּשj0(1) is the bias node
and is always clamped as x0 = 1 [nn0].

The function g is a sigmoid function which is normally expressed as;

y = 1/ (1-e-x) (eq 2).

The output from the network can be similarly expressed as;

d

ak = g(∑ ּשkj(2) xi + ּשk0(2)) (eq 3).

j=1

__

Page 43 of 184

Where ּשkj(2) expresses the weight between the jth hidden node and the kth output node, ak
represents the input to the kth output unit. Again the function g is normally the sigmoid
function expressed in eq 2.

These equations are implemented in the AeAnalyserMLP class and provide an
implementation of AeAnalyser such that the analysis of the EvHTTPRequest objects may be
conducted using this technique.

6.2.2 Training Algorithms for MLP Networks

The main function of a these types of Neural Network is the algorithms available for finding
an appropriate weight matrix which will solve the problem you are wanting to solve. This
means the inevitable use of an algorithm for realizing the weights of the network. In this
project two such algorithms are considered. The first is a tournament selection based Genetic
Algorithm, the second based on the original Back Propagation with a momentum term added
[nn3, nn0]. Momentum helps resolve the problem of becoming stuck in local minima and
provides smoothing of the weight space [nn0].

The Genetic Algorithm is a very simple two member tournament based selection algorithm
with creep mutation [nn5]. It is specified below;

Algorithm runAlgorithm(TrainingSet ts)
Begin
 Candidate1 = random member of population
 Candidate2 = random member of population

 If (candidate1.fitness>candidate2.fitness) then

candidate1 ↔ candidate2

 foreach w ∈ candidate1.weights
 if (probability of recombination)
 candidate2.weights[w] candidate2.weights[w]
 if (probability of mutation)
 candidate2.weights[w] candidate2.weights[w]
 end

 candidate2.fitness fitness(candidate2)
end

Algorithm fitness(member)
Begin
 Sum = 0
 Foreach t ∈ ts
 Networkweights member.weights
 Fire(ts.getInputs(t))
 Sum+=Calculate error2
 end
end

 fig 6.4

__

Page 44 of 184

The Back Propagation algorithm is specified as follows;

Both algorithms have the same theoretical running time of O(n) [nn5]. Both algorithms have
other similar credentials; both algorithms are valid training algorithms for MLP networks. In
general the Back Propagation algorithm tends to be more reliable at finding a similar
accuracy in each run of the algorithm.

These algorithms will be implemented within the AeMLPTrainer interface allowing them to
“plugged” into the framework of the system and allowing their performance to be compared.

Algorithm runAlgorithm(TrainingSet ts)
Begin
 Foreach t ∈ ts

Fires(ts.getInputs(t))
Foreach oNode ∈ outputlayer

 Error target(t) – output(t)
 Calculate Delta for o
 Foreach hNode ∈ hiddenlayer
 CalculateWeightDeltas
 AdjustWeights

end
 end

Foreach hNode ∈ hiddenlayer
 error 0.0;
 Foreach oNode ∈ outputlayer
 Error = delta for o * wts_h_o[h][o]

end

 Foreach iNode ∈ inputlayer
 CalculateWeightDeltas
 AdjustWeights

end
 end

 end
end

 fig 6.5

__

Page 45 of 184

6.2.3 Application of MLP’s to the problem domain

The system will incorporate the anomaly detection model [ids4, ids11]. This model specifies
that the system be “taught” in some way that a bunch of inputs is normal. Variations from
this normal model can then be detected using an appropriate technique. Of course MLP
Neural Networks are capable of learning any function, and so could potentially learn the
pattern which warrants “normal” data.

The system that will be used for training the network is specified below;

Algorithm anomalyDetectionTraining()
Begin

 TrSet set1 = getTrainingSet()
 TrSet set2 = set1.split() // this will break the training set into two equal parts.

 NeuralNet n;

 For i=0 to epochs
 n.train(set1)

 n.testQuality(set1)
 n.testQuality(set2)
 Next
End

(part of MLP implementation class)

Algorithm testQuality(TrSet)
Begin
 Foreach t ∈ set1
 output fire(t)

 // Error is implemented as sum of the squared

// error of the outputs against the normal
// target.
if (Error(output) > 0.5)

 raiseAlarm()
Next

End

fig 6.6

__

Page 46 of 184

6.3 Principle Component Analysis Networks

6.3.1 General discussion of PCA

Principle Component Analysis is a well known statistical technique [nn3]. It is the process of
taking some high dimensional input data and projecting it onto a lower dimensional space
whilst maximally preserving the information about the original input data. It is a type of
feature extraction [nn0] where we reduce the complexity of the input data to gain increased
speed and generalization capabilities of the Neural Network.

There is however other reasons for applying PCA to data excluding feature extraction. This
may include actually analyzing the vector which represents the Principle component, it can
tell us a lot about the data. The first Principle Component provides us with the vector which
gives maximum variance in the data. Of course sub-sequent Principle Components are the
vectors where the data is projected ortho-normal to the previous components which give
maximum variance in the new projected space.

Implementations of PCA may use matrix equations [nn0]. However there are alternative
ways to perform PCA, one such way is to use an unsupervised Neural Network [nn3]. This
project will investigate the use of Principle Components on the data in order to learn more
about the data in the chosen encoding.

6.3.2 Associative Memories and Oja’s rule and Sangers rule

Associative memories work by strengthening a connection each time it is used. This results
in the weights which are used more often to become stronger. In the context of an Artificial
Neural Network, we can see that patterns the Network has seen previously are more likely to
give a higher response then a pattern that has not been seen before.

Of course several things need to be taken into account when using such a technique, as if we
simply continue to increase the weights they will become very large. Many people have
developed algorithms for the normalisation of these kinds of Networks namely Oja [1982].

wi(n+1) = wi(n) + ŋy(n) xi(n)____

√(∑(wi(n) + ŋy(n)xi(n))2) (eq 6.1)

This equation will allow a bunch of weights to be updated so that the inputs seen most often
will allow the Processing unit to be given a higher value. Using this type of Neural Network
we are able to implement PCA. The equation in 6.1 finds the maximum variance among the
input data. This is of course the first Principle component. Using a slightly modified version
of this equation we are able to apply the deflation method [nn3]. This will project the data
onto an axis perpendicular to the first eigenvector, allowing us to apply the algorithm again to
find the next Principle component. This may be applied as many times as the number of
dimensions you wish to map the data to.

__

Page 47 of 184

fig 6.7

Fig 6.1 shows a PCA network which will map the input vector X onto the output vector Y. Y
will correspond to the first n Principle components. To achieve this mapping the following
update rule is applied (Sangers rule);

 i
∆wij(n) = ŋyi(n) [xj - ∑wkj(n)yk(n)]
 k=1 (eq 6.2)

wij(n) = wij(n) + ∆wij(n) (eq 6.3)

__

Page 48 of 184

6.3.3 K-Nearest Neighbours algorithm

This is a very naïve algorithm designed to find the most likely classification of a new point in
the M-dimensional space. Using the Euclidean distance between the new point and the K-
Nearest points around it, the classification is made based upon the class which a majority of
the neighbours belong to.

The algorithm goes as follows;

The Euclidean distance is calculated via the following equation;

 i=length(n and t)
Ei = √(∑(ti – ni)2)
 i=0

Where ti and ni is the value of an axis in the M dimensional space, where t is the set of
training points and n is the new point.

6.3.4 Application of PCA Networks to the problem domain

PCA networks and indeed PCA in general is a very good technique for finding the parts of
the input data which are most useful. The data sets that we are looking at in this project may
have defining feature which accounts most of the variance in the data. This would allow us
to classify the data according the score which is given at each Principle component.

The frequency of characters in the URL strings is quite likely to occur in groups, such as
vowels or number characters. If this is the case it may be possible to simply extract the
necessary character groups from the Principle component weights and decide the
classification of the URL string using these criteria.

Another use of this technique is simply to use it for feature extraction. It may be the case that
an unsupervised layer before an MLP or similar network may give better classification of the
data. PCA should map the original 266 dimensional input space of character frequencies
onto 10 Principle components representing maximum dispersion in the data.

algorithm K-NearestNeigbours(HTTPRequest new)

Let Q be a priority queue which holds K HTTP requests

For each trainer є HTTPRequest in training set do
 Value Euclidean distance (new, trainer)
 Q.add(new, value)
End for

Return the most prominent classification in Q.

Fig 6.3.1

__

Page 49 of 184

6.4 Recurrent Neural Networks

6.4.1 Discussion of Recurrent Neural Networks

Recurrent Neural Networks are Neural Network architectures which contain links both
forward through the Network and backward. These architectures are therefore capable of
storing some sort of memory. Of course there is much Neural Network architecture capable
of representing memory in this way. The most common of these are set architectures, which
are based on feed forward architectures and contain very precise recurrent links namely
William Zipster [nn2] and Elman Networks [nn2, nn1]. Many people have also experimented
with evolving the network architecture from scratch, although this technique gives results
which are difficult to interpret.

Recurrent Neural Nets of the Elman and Zipster variety are good at tasks such as time series
prediction and signal processing [nn2]. The memory which Recurrent Neural Networks are
capable of storing is an important aspect in time series prediction. It allows us to find
patterns which exist not just in this time instance but throughout time, in essence “unfolding”
time. Allowing the Network to predict and classify structures in time [nn1].

6.4.2 Elman Networks

Jeffrey Elman (1990) proposed a simple recurrent Neural Net architecture which he named
the Elman network its architecture is as follows;

The vector X represents the input vector, H the hidden layer and O the output layer. The
design is very similar to an MLP except it contains an extra recurrent layer which is called
the context layer and is represented by the vector C. Every time the network is activated the
internal values at the hidden layer are copied up to the context layer. The context layer feeds
forward in the same way as the input vector.

This allows the network to store its internal state at t-1 time steps, where t is the number of
time steps, thus allowing the Network a limited amount of memory.

__

Page 50 of 184

The weights which connect the context layer to the hidden layer can now be trained with
techniques found for MLP Networks, namely Back Propagation. The Elman network trained
with Back Propagation is aptly named “Back Propagation through time”; it is capable of
finding patterns in time [nn1].

6.4.3 Application of Recurrent Networks to the problem domain

Of course most attackers will go through a sequence of steps whilst attempting to
compromise a host. These may be performing scans of the host system for known
vulnerabilities followed by an attempted exploit. These patterns an attacker goes through
may be found to differ from say a normal user who continually clicks on links to legitimately
navigate through a web site.

However the use of these kinds of networks becomes rather complex when we start looking
at the implementation of them in an Intrusion Detection System. If we are looking at every
HTTP request going through to the web server regardless of who is making the request, the
patterns may be very difficult for any kind of system to spot. The other approach would be to
“spawn” a Neural Network to look at each individual user’s requests. This approach then
complicates the system immensely; we encounter problems such as determining where the
request originated from, if a bunch of people are behind Proxy connections, all users of the
system will be analysed by the system as though they were a single user. Further threats to
the system itself exist as people may emulate this behaviour.

Recurrent Neural Networks find structure in time, what if the structure of normal usage, or
indeed misuse of the system contains no such structure. Then the system will fail.

__

Page 51 of 184

7 Implementation and Testing

7.1.1 Commentary

The implementation of the framework was quite straight forward and seemed to work well.
The multiple EvReader classes helped a lot when trying to pull data from a number of places
into the same training environment. The tests which are about to be shown are those taken
from four separate web sites, the first is a static, content only web site, the others are more
complex sites which contain database access personal login pages and other dynamically
generated content designed to test the robustness of the system. The sites have not been
named here but are all existing sites which could benefit from a system such as this.

The attack data was collected from a number of sources, namely securityfocus.com, several
underground hacking sites which can’t be named, packet traces from the DEFCON “capture
the flag” (CCTF) competition and a trace generated from the Nessus security scanner. All the
traces used in these tests are approximately 5000 requests long, the data contained ranges
from several distinct sessions.

7.1.2 MLP Results

The results using Multi-Layer Perceptron Neural Networks are promising. Each of the sites
was trained against the collection of attacks which were accumulated. We find the results do
differ between the different sites but all in all it works pretty well. The training phase
consisted of reading all the requests into EvTrSet objects, these then contained marked
EvHTTPRequest objects (marked as attack or not attack). This set was then split into two,
picking the test and training set at random in a uniform manner. The analyser was then
trained on the training data, after every 1000 epochs the results were recorded. This is what
forms the basis for the following discussion. All the data presented is the unseen data, the
analyser is tested with a different data set from that which it was trained.

__

Page 52 of 184

7.1.2.1 SITE A – CONTAINS ONLY STATIC PAGES

Graph to show error reduction in test data set

0

100

200

300

400

500

600

700

0
30

0
60

0
90

0
12

00
15

00
18

00
21

00
24

00
27

00
30

00
33

00
36

00
39

00
42

00
45

00
48

00
51

00
54

00
57

00
60

00
63

00
66

00
69

00
72

00

Epochs

Su
m

 o
f s

qu
ar

ed
 e

rr
or

First run
Second run
Third run

Graph to show the false positive and false negative identifications

0

20

40

60

80

100

120

0
30

0
60

0
90

0
12

00
15

00
18

00
21

00
24

00
27

00
30

00
33

00
36

00
39

00
42

00
45

00
48

00
51

00
54

00
57

00
60

00
63

00
66

00
69

00
72

00

Epochs

Pe
rc

en
ta

ge
 o

f

false neg
false pos

__

Page 53 of 184

Graph to show correctness of identifications

0

20

40

60

80

100

120

0
30

0
60

0
90

0
12

00
15

00
18

00
21

00
24

00
27

00
30

00
33

00
36

00
39

00
42

00
45

00
48

00
51

00
54

00
57

00
60

00
63

00
66

00
69

00
72

00

Epochs

pe
rc

en
ta

ge
 c

or
re

ct

First run
Second run
Third run

Fig 7.1 shows the reduction in error over the 7200 generations. We can see that each run is
fairly consistent reaching similar values each time. However it is clear that the randomly
chosen training and testing sets makes a different to the final result, looking at fig 7.4 we see
the correctness can range from 95% right the way up to 100%. With a static website is
completely feasible to make sure all the pages in the site are used in training and this will
eliminate any such error.

If we take a look at fig 7.2 we see the plot of false negatives against false positives (see
glossary). We notice the number of false positives start off less than the false negatives and
cross at about epoch 300. This closely tallies with fig 7.1, as the error begins to fall. These
values never cross again but converge closer and closer together nearing zero. On one
occasion here the false positive and false negative rate both in-fact reach zero. We should
notice the rather large range in false negative values here however, in the worst case we
receive a false negative rate of 33%, this is clearly unacceptable and we can only speculate
that it was due to a badly chosen training set.

 Worst Best Average
Correctness 95.2 100 98.11901
False Negatives 0 0 13.33333
False Positives 33.33333 0 0

fig 7.4

__

Page 54 of 184

7.1.2.2 SITE B – CONTAINS DYNAMIC PAGES

Graph to show error reduction in test data set

0

100

200

300

400

500

600

700

800

0
30

0
60

0
90

0
12

00
15

00
18

00
21

00
24

00
27

00
30

00
33

00
36

00
39

00
42

00
45

00
48

00
51

00
54

00
57

00
60

00
63

00
66

00
69

00
72

00

Epochs

Su
m

 o
f s

qu
ar

ed
 e

rr
or

s

First run
Second run
Third run

Graph to show the false positive and false negative identifications

0

20

40

60

80

100

120

0
30

0
60

0
90

0
12

00
15

00
18

00
21

00
24

00
27

00
30

00
33

00
36

00
39

00
42

00
45

00
48

00
51

00
54

00
57

00
60

00
63

00
66

00
69

00
72

00

Epochs

Pe
rc

en
ta

ge
 o

f

false neg
false pos

__

Page 55 of 184

Graph to show correctness of identifications

0

20

40

60

80

100

120

0
30

0
60

0
90

0
12

00
15

00
18

00
21

00
24

00
27

00
30

00
33

00
36

00
39

00
42

00
45

00
48

00
51

00
54

00
57

00
60

00
63

00
66

00
69

00
72

00

Epochs

pe
rc

en
ta

ge
 c

or
re

ct

First run
Second run
Third run

This web site contains log-in pages, many forms for posting data and much database access
the variation in these traces is quite high. However as you can see from fig 7.5, the response
to the training process is extremely promising, on each of the three runs the error fell very
low. It also shows a high degree of consistency considering the random nature by which the
training sets were collected. Fig 7.6 shows a similar scenario to fig 7.2 where the false
negative and positive rates cross, and then converge once again. The false negative rate again
reaches an outstandingly consistent value of 0%. The false negative rates could be improved
upon, it is more important to allow legitimate data through so this seems reasonable.

 Worst Best Average
Correctness 99.04 99.4 99.24731
False Negatives 2.60 0.537 0
False Positives 0 0 0

fig 7.8

__

Page 56 of 184

7.1.2.3 SITE C – CONTAINS DYNAMIC PAGES

Graph to show error reduction in test data set

0

100

200

300

400

500

600

0
30

0
60

0
90

0
12

00
15

00
18

00
21

00
24

00
27

00
30

00
33

00
36

00
39

00
42

00
45

00
48

00
51

00
54

00
57

00
60

00
63

00
66

00
69

00
72

00

Epochs

su
m

 o
f s

qu
ar

ed
 e

rr
or

s

First run
Second run
Third run

Graph to show error reduction in test data set

0

20

40

60

80

100

120

0
30

0
60

0
90

0
12

00
15

00
18

00
21

00
24

00
27

00
30

00
33

00
36

00
39

00
42

00
45

00
48

00
51

00
54

00
57

00
60

00
63

00
66

00
69

00
72

00

Epochs

su
m

 o
f s

qu
ar

ed
 e

rr
or

s

false neg
false pos

__

Page 57 of 184

Graph to show correctness of identifications

0

20

40

60

80

100

120

0
30

0
60

0
90

0
12

00
15

00
18

00
21

00
24

00
27

00
30

00
33

00
36

00
39

00
42

00
45

00
48

00
51

00
54

00
57

00
60

00
63

00
66

00
69

00
72

00

Epochs

pe
rc

en
ta

ge
 c

or
re

ct

First run
Second run
Third run

This site took a little longer for the back-propagation to home in on the correct values, but the
accuracy is unflawed. The correctness is nearing 100% on all three occasions and actually
reaches 100% in one case. The best figure contains a zero false negative and false positive
rates as you would expect. Fig 7.10 shows the very fast convergence of these values, this site
contains much E-Commerce processing and dynamic content and these highly accurate
figures come un-expected.

 Worst Best Average
Correctness 99.5 100 99.75843
False Negatives 2.6 0 0.496581
False Positives 0 0 0

fig 7.12

__

Page 58 of 184

7.1.2.4 SITE D – CONTAINS DYNAMIC DATA

Graph to show error reduction in test data set

0

100

200

300

400

500

600

700

800

0
30

0
60

0
90

0
12

00
15

00
18

00
21

00
24

00
27

00
30

00
33

00
36

00
39

00
42

00
45

00
48

00
51

00
54

00
57

00
60

00
63

00
66

00
69

00
72

00

Epochs

Su
m

 o
f s

qu
ar

ed
 E

rr
or

s

First run
Second run
Third run

Graph to show the false positive and false negative identifications

0

20

40

60

80

100

120

0
30

0
60

0
90

0
12

00
15

00
18

00
21

00
24

00
27

00
30

00
33

00
36

00
39

00
42

00
45

00
48

00
51

00
54

00
57

00
60

00
63

00
66

00
69

00
72

00

Epochs

Pe
rc

en
ta

ge
 o

f

false neg
false pos

__

Page 59 of 184

Graph to show correctness of identifications

0

10

20

30

40

50

60

70

80

90

100

0
30

0
60

0
90

0
12

00
15

00
18

00
21

00
24

00
27

00
30

00
33

00
36

00
39

00
42

00
45

00
48

00
51

00
54

00
57

00
60

00
63

00
66

00
69

00
72

00

Epochs

pe
rc

en
ta

ge
 c

or
re

ct

First run
Second run
Third run

This site has thrown up some oddities. Fig 7.13 contains a much wilder training phase than
all the other sites and produces much less quality error values. Fig 7.14 shows an erratic
convergence of false positive and negative rates, however they do seem converge at one point
and then diverge again. The point at which they converge (about 6300) epochs would be the
point where the network is becoming over-trained and in a live environment we would stop
the learning there. The final graph; shown in fig 7.15 shows an equally erratic clime to a
reasonable correctness level with an average of 89%. This site doesn’t seem to fit as well to
the model as the others seem to. This does go to show the inherent inconsistencies between
the different web sites and URL’s they will produce.

 Worst Best Average
Correctness 87 91 89.56969
False Negatives 9.8 3.8 6.531439
False Positives 26.7 18 22.29167

fig 7.16

__

Page 60 of 184

7.1.3 GA versus Back Propagation

Graph to show error reduction in test data set

0

100

200

300

400

500

600

700

0

31
00

62
00

93
00

12
40

0

15
50

0

18
60

0

21
70

0

24
80

0

27
90

0

31
00

0

34
10

0

37
20

0

40
30

0

43
40

0

46
50

0

49
60

0

52
70

0

55
80

0

58
90

0

62
00

0

65
10

0

68
20

0

71
30

0

74
40

0

77
50

0

80
60

0

83
70

0

86
80

0

89
90

0

93
00

0

96
10

0

Epochs

Su
m

 o
f s

qu
ar

ed
 e

rr
or

s

First run
Second run
Third run

Graph to show the false positive and false negative identifications

0

20

40

60

80

100

120

0

30
00

60
00

90
00

12
00

0

15
00

0

18
00

0

21
00

0

24
00

0

27
00

0

30
00

0

33
00

0

36
00

0

39
00

0

42
00

0

45
00

0

48
00

0

51
00

0

54
00

0

57
00

0

60
00

0

63
00

0

66
00

0

69
00

0

72
00

0

75
00

0

78
00

0

81
00

0

84
00

0

87
00

0

90
00

0

93
00

0

96
00

0

Epochs

Pe
rc

en
ta

ge
 o

f

false neg
false pos

__

Page 61 of 184

Graph to show correctness of identifications

0

20

40

60

80

100

120

0

31
00

62
00

93
00

12
40

0

15
50

0

18
60

0

21
70

0

24
80

0

27
90

0

31
00

0

34
10

0

37
20

0

40
30

0

43
40

0

46
50

0

49
60

0

52
70

0

55
80

0

58
90

0

62
00

0

65
10

0

68
20

0

71
30

0

74
40

0

77
50

0

80
60

0

83
70

0

86
80

0

89
90

0

93
00

0

96
10

0

Epochs

pe
rc

en
ta

ge
 c

or
re

ct

First run
Second run
Third run

We can see from these results that the Genetic Algorithm used for training does indeed find a
suitable level of accuracy. However the time it takes to do so is much greater than the Back
Propagation algorithm and so its use is no longer considered. The nature of the Genetic
Algorithm means that the weights will be manipulated in a much more random fashion and
provide much less precise guidance into a reasonable error value.

__

Page 62 of 184

7.1.4 PCA using unsupervised Neural Nets Results

The PCA results look a little unnerving. They reveal a very complex search space which
seems to be much more complex than first thought.

7.1.4.1 PCA RESULTS PLOTTED IN 2-D SPACE

Site A
PCA of Attacks and Normal data

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5

PCA 1

PC
A

 2 Attacks
Normal data

Site B

PCA in 2 Dimensions of Attacks/Normal data

-0.5

0

0.5

1

1.5

2

-2.5 -2 -1.5 -1 -0.5 0 0.5

PCA 1

PC
A

 2 Attacks
OK data

__

Page 63 of 184

Site C
PCA of Attacks and Normal Data

-1.5

-1

-0.5

0

0.5

1

1.5

-2.5 -2 -1.5 -1 -0.5 0 0.5

Attacks
Normal data

Site D

PCA of Attack against Normal data

-1.5

-1

-0.5

0

0.5

1

1.5

-0.5 0 0.5 1 1.5 2 2.5

Attacks
Normal

__

Page 64 of 184

All Sites

Graph to show principle component analysis 2 dimensional plot of scores

-2

-1.5

-1

-0.5

0

0.5

1

1.5

-3 -2.5 -2 -1.5 -1 -0.5 0 Attacks
Normal

These results look a bit messy. There seems to be no clear split between the two classes for
any of the sites. Site C seems to give the most clear cut distinction. It may be necessary to
look at a higher dimensional space, in essence finding more Principle Components. Of
course these cannot be plotted in a graph as the dimensionality is too high.

__

Page 65 of 184

7.1.4.2 PCA RESULTS AS BAR CHART OF SCORES OF FIRST TEN PRINCIPLE COMPONENTS

Graph to show PCA Scores for selected URL Strings

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10

PCA Number

Sc
or

e

….. Normal Data

….. Attack Data .

Fig 7.20 shows the results of PCA for the first ten Principle Components. We see no real
correlation between any of the values here. When we look at what the actual Principle
Components are however we do see some interesting things appearing.

__

Page 66 of 184

All the sites seem to pick out the ‘/’ and ‘.’ characters a lot, this is used in directory traversal
attacks so this does has some significance. The other thing to notice is the use the character
‘X’, it happens that most of the buffer overflow attacks use this character for padding the
buffer giving this relevancy. Also notice that the size of the URL is quite probably the most
significant thing in each of the sites. We also notice vowels such as ‘i’ and ‘e’ popping up
occasionally, of course most standard web site URLs’ are likely to contain vowels. This PCA
appears to give us some information in the analysis of what the MLP Neural Net may be
exploiting, but seems unlikely to aid us in the classification task, as the scatter graphs of
section 7.1.3.1 show.

__

Page 67 of 184

7.1.4.3 PCA RESULTS – APPLICATION OF 10 NEARESET NEIGHBOURS IN 10-D SPACE

Nearest Neighbours in 10 D space.

0 10 20 30 40 50 60 70 80 90 100

Site A

Site B

Site C

Site D

w
eb

 s
ite

Percentage of correct classifications

The Nearest Neighbours algorithm applied to the 10 dimensional space plotted from the
scores of the PCA gives reasonable accuracies. We see ranges from mid fifties to seventy
percent accuracy; this shows the application of PCA is mapping the output onto a reasonable
lower dimensional space which allows for some crude classification. Of course an MLP
Neural Network may be able to use this pre-processed information and increase the accuracy
of the classifications but it is promising to know that the points of interest are fairly close
together after PCA in 10 dimensions.

__

Page 68 of 184

7.1.4.4 PCA RESULTS AS PRE-PROCESSOR FOR AN MLP NEURAL NETWORK

Graph to show error reduction in test data set

680

690

700

710

720

730

740

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Epochs

Su
m

 o
f s

qu
ar

ed
 e

rr
or

s

Series1

The PCA network did not provide as good a solution as expected! The graph in fig 7.26
shows an example of an appalling run. The elapsed time for this to run was just over 8 hours!
It provides no indication of convergence to a reasonable error value. This shows that PCA
does not provide a very good pre-processor for the MLP for this problem. PCA in general
has been useful in some instances and not in others a further investigation into unsupervised
learning and other statistical techniques is a worthy topic of investigation in the future.

__

Page 69 of 184

7.1.5 Letter group occurrence analysis

Graph to show normalised frequency of letter groups in URLs(Attacks)

0 0.1 0.2 0.3 0.4 0.5 0.6

no
rm

al
is

ed
 fr

eq
ue

nc
y

URLs

Unicodehex
Digits
Locators
Vowels

 fig 7.27
Graph to show normalised frequency of letter groups in URLs(Normal data)

0 0.05 0.1 0.15 0.2 0.25 0.3

no
rm

al
is

ed
 fr

eq
ue

nc
ie

s

Unicodehex
Digits
Locators
Vowels

fig 7.28

From fig 7.27 and fig 7.28 we can generally see a lower frequency of vowels in the attack
strings. This is probably due to the nature of an attack, as other characters such as buffer
overflow padding an egg code is normally added, this will wash out the vowel frequency.
We also notice the increased use of Unicode and hexadecimal values; these are not normally
attributed to normal URL strings to the same extent.

__

Page 70 of 184

7.1.6 Recurrent Neural Net Results

An Elman Network (section 6.4.3) was implemented in the original version of this project
(Appendix 10.1.2). The use of Recurrent Neural Nets (RNNs’) required a completely
different approach to the design of the analysis and event engines. The use of sessions,
whereby a Network would look after a particular user’s session and analyse its behaviour was
used. The use of such a complex framework meant that the complexity of the program
escalated.

Many problems emerged, such as how to decide which session a particular request belonged
to. The HTTP protocol does not contain the concept of sessions in this sense (of course
Session state can be used). Other problems emerged such as the spoofing of IP Addresses,
which will throw off any session based analysis. Other issues include the use of Proxy
Servers, if the user of the web site is behind a Proxy Server the users from behind the proxy
will look like they are from the same IP address. This complicates matters further and leads
to a very unstable design which has no practical use.

The actual use of RNNs’ becomes very complex when dealing with patterns over time.
Ignoring all the problems stated above, the system was implemented. Sessions were hand
crafted to ensure that they were correct and the data sets were created. The Neural Network
was able to learn the patterns of session based activity, but when given a new session it had
not seen before, the system failed spectacularly. It seems that Elman networks are very
capable of learning the patterns of requests through time but have absolutely no chance of
any generalization task. The search space appeared very complex and no real patterns were
present in requests in time.

__

Page 71 of 184

7.1.7 Deployment of a live system
7.1.7.1 COMMENTARY

The system can be deployed in a number of ways. The EvReader interface (section 5.2.3)
can be implemented allowing a generic way for the AnalysisEngine to receive analysis
requests. Several ideas were discussed and the system implements two such systems as live
systems which are ready to be used.

The first idea for the deployment of the URL scanner would be to use it inside the Web server
itself. This would require adding the system to a current Web server or indeed building a
new one. This would mean that each request received is analysed and the connection
abandoned if deemed malicious.

The second idea for deployment is to use the library libpcap which was used in training. This
system provides a nice structure to access Ethernet cards and would be an implementation of
a packet sniffer/sucker.

The final idea for deployment of our system is to implement an application level firewall.
This would be a Proxy Server that forwards requests to the Web Server. Requests would not
be forwarded if the analysis engine deemed the request malicious.

The final implementation only uses the latter two, below is a discussion of their
implementations.

__

Page 72 of 184

7.1.7.2 PACKET SNIFFER

 The Packet Sniffer is implemented in the class EvReaderJPCap. Its use implements the
EvReader interface using the JPCap library. This library is a java wrapper for libpcap, the
infamous UNIX packet capture library. Implementation was fairly straightforward as the
JPCap library offers a lot of functionality which saves time.

The problem with this kind of system is it is really a detection system. The system will run
on a computer on the same network as the Web Server, or indeed the same machine as the
Web Server. If the system is on different machine the network card of that system will need
to be set to promiscuous (see glossary). Also this topology will not work unless the hub is
not switched. If it is a switched hub or router the requests will not reach the Packet Sniffer.

 If the Packet Sniffer sees a packet it thinks is malicious it will log the event. A statistics
broadcast is displayed every few minutes to inform people of the number of attempted
attacks.

Fig 7.29 shows a typical installation of such a system. Any
attempt to attack the Web Server will be recorded for
analysis by the Packet Sniffer. It is better to have it on
another machine, because if the Web Server is compromised
the log files could be erased.

Fig 7.30 shows a console output of this system running. Appendix 10.3.1 shows the results
of analysis of some selected data in the form of a log file.

__

Page 73 of 184

7.1.7.3 APPLICATION LEVEL FIREWALL, PROXY SERVER

A firewall is normally associated with a system which blocks particular IP, TCP, UDP, ICMP
etc packets according to a set of rules. IPCHAINS and Microsoft’s ISA are such systems.
Firewalls can however be at the application level applying rules for the passing of packets. It
seems like a good idea to include an application firewall approach to the deployment of the
system. Reasons for this include the benefits of a standard firewall;

• Requests that do not meet the criteria specified are simply not allowed to pass, so the
success of the attack is greatly reduced.

• The Web Server is not less likely to receive garbage which will eat resources on the
system.

• The implementation is Web Server independent, i.e. it will work on IIS and Apache.

Below is the architecture of a typical implementation of such a system;

The simplest way to implement this kind of system is to
write a Proxy Server. This is a server which sits on the
firewall computer. Requests for the Web Server are first
dealt with by our Proxy Server. If the request passes
analysis it can be forwarded on to the Web Server and the
response given to the client. It is important to give a
confusing message to the attacker who is attempting the
attack. Such a message would be to close the connection, or
to return a page not found error or such like.

Here is the console output when running this system when an attack is received;

__

Page 74 of 184

8 Conclusion

The goal of the system was to investigate the field of Intrusion Detection in an attempt to
apply Artificial Neural Networks to the problem domain. Contrary to most other Intrusion
Detection Systems we looked not at the transport and network layers but at the application
level protocols, namely the HTTP protocol.

A number of techniques were applied in analyzing HTTP request data, in an attempt to detect
attacks whilst keeping the false alarm rate to a minimum. [ids12] tells us that the false alarm
rate is actually the limiting factor and shows the system to be useful. System administrators
will become much more willing to investigate an attack attempt if the false alarm rate is low,
or in fact non-existent. The results found in this investigation show varying degrees of
success in this task.

With an MLP trained with Back Propagation, static web sites seem to be able to gain an
accuracy of 100%. Dynamic web sites provide less accurate results but these results are still
in the high 90’s. We should notice that two out of the three dynamic web pages were able to
gain false alarm rates (false positives) at 0% on more than one occasion. These results are
very promising. Further investigation could be done into discovering what sorts of URL
strings help the system learn better and guidelines for users of the system could be produced.

When we replaced the Back Propagation algorithm with a Genetic Algorithm (GA) we found
that the GA was capable of finding a suitable set of weights. However the length of time the
Back Propagation algorithm took to train was far shorter than the GA. The superiority of the
Back Propagation algorithm led us to no longer consider the GA in the testing process.

PCA provided little information as to the workings of the system. It did provide us with
some insight into the kinds of characters we see in the normal and attack data. This
information could have been useful in constructing a pre-processor for our MLP Neural Net
but actually provided a very poor solution.

Recurrent Neural Nets were looked into as an analytical technique. This task became quite a
major one and the investigation into the Elman network was aborted due to the wildly poor
results.

Finally we looked at a very simple analysis of groups of letters in order to discover if there
was some simple way to classify the data. What we found was some correlation between the
characters involved in attacks and those not, but a significantly obvious relationship did not
exist.

__

Page 75 of 184

The other functional requirements were fulfilled as follows;

1. The system must be able to read HTTP messages from a variety of sources. These
must include raw network packets, log files and TCP/IP sockets.

This requirement was met through the EvReader interface and its implementation see
section 5.2.3.

2. The user will be able collect the necessary training data using an appropriate tool.

This requirement was fulfilled, with the use of the EvReader implementation using
the packet capture library JPCap. The EvReaderJPCap reader can be combined with
the AeAnalyserDump class which dumps the data to the disk for further analysis later.

3. The user will be able to train the neural network based analysis engine.

The WiTrainEnv and the WiComponentFactory object allow the user to configure the
training environment in which the system is trained. The highly configurable nature
of the system allows the user to implement their own AeAnalyser objects if they wish.

4. The system must be able to be started and stopped by a privileged user of the
system.

The system requires root access to the system in order to open the EvReaderJPCap in
live mode. It may only then be killed by a privileged user of the system.

5. The system will be capable of learning the difference between a normal HTTP
message and an anomalous one.

This was the main goal of the project. This requirement has been full-filled as the
analysis engine provides high levels of accuracy.

6. The system is required to notify a system administrator when a sequence of events

that is likely to be an attack is encountered.

The framework of the system allows a system administrator to register an EvObserver
object with the Event Engine. If a possible attack is detected the Event Engine will
then notify the registered observer objects. Administrators may implement these
objects as they choose.

7. Statistics of the systems operation must be able to be collected for analysis and

review.

Each AeAnalyser object writes out statistics regarding the analyzers performance.

The non-functional requirements were also fulfilled as stated;

1. The system must be easy to train for new users of the software. The mechanism
for training the system used must be easy to understand and allow someone with a

__

Page 76 of 184

reasonable background in computer networks to capture the correct data and use
the training software to create an analysis engine for their network.

This requirement has been fulfilled as much as possible, although the system is fairly
difficult to set up and use. Future work could make this part of the system nicer.

2. Users of the system must be able to start and stop the system easily.

This is simply a matter of being root and typing;

java WebIDS.WiTrainEnv

 or java WebIDS.WiOpenLive

into the console, and so anyone with any knowledge of UNIX should be able operate
the starting and stopping of the system.

3. Users of the system must be able to configure any parameters the system may use

in an easily manageable way.

All parameters are configured from constant values in individual class files. Main
things, such as which EvReader and which AeAnalyser to use are configured through
the WiComponentFactory class. This seems reasonable, although it could be
improved upon.

This project was investigation into Intrusion Detection within a Web Server. We found a
suitable method of analysis by using an MLP Neural Network. Each requirement was
fulfilled to a degree.

The project has opened up many avenues of investigation. Namely Recurrent Neural
Networks and their application to this kind of system may provide a better analytical
technique. Other future work includes the use different Neural Network architectures which
may or may not be better suited to this kind of analysis.

Research within the IDS area tends to be heading more towards a distributed approach, where
a number of analytical techniques are employed looking at several avenues within the system
[ids2]. These kinds of systems can then draw correlations between a number of different
analytical paths within the system.

Finally, this project was looking at the HTTP protocol. It would be interesting to see whether
other internet protocols respond to this kind of analysis in a similar manner. The use of these
techniques on encrypted protocols, such as SSH unearth another potential problem.

__

Page 77 of 184

9 References
These many of these references are also discussed in the literature survey in Appendix $X.

[se0] Phrack 49 Oo Vol 7 Issue 49 Smashing the Stack for fun and profit

[se1] Mudge: How to write Buffer Overflows Tutorial

[se2] scutt/team teso, Exploiting Format String vunerabilities.

[se3] rain.forest.puppy, Perl CGI problems, Phrack Issue 55

[se4] Gregory Gilliss, CGI Security Holes, Phrack Magazine,Volume Seven, Issue Forty-Nine

[se5] rain.forest.puppy, NT Web Technology Vulnerabilities, Phrack Magazine, Volume 8, Issue 54 Dec 25th,
1998

 [se6] Scambray Joel, McClure Stuart and Kurtz George: Hacking Exposed

[se7] horizon jmcdonal@unf.edu, Defeating Sniffers and Intrusion Detection Systems,Phrack Magazine
Volume 8, Issue 54 Dec 25th, 1998, article 10 of 12

[se8] http://www.theregister.co.uk/content/archive/22010.html

[ids0] Helmer Guy G, Wong Johny S.K, Honavar Vasant and Miller Les. Intelligent Agents for Intrusion
Detection. Ames, Iowa.

[ids1] Cannady James, Artificial Neural Networks for Misuse Detection.

[ids2]Balasubramaniyan Sundar Jai, Garcia-Fernandez Omar Jose, Isacoff David, Spafford Eugene, Zamboni
Diego, An Architecture for Intrusion Detection using Autonomous Agents.

[ids3] Ghosh Anup K, Schwartzbard Aaron and Schatz Michael, Learning Program Behavior profiles for
Intrusion Detection.

[ids4] Ghosh Anup K and Schwartzbard Aaron, A Study using Neural Networks for Anomaly and Misuse
Detection.

[ids5] Ranum J Marcus, LangField Kent, Stolarchuk Mike, Sienkiewicz Mark, Lambeth Andrew, Wall Eric,
Implementing a Generalized tool for network monitoring.

[ids6] Paxton Vern Bro: A System for Detecting Network Intruders in Real-Time

[ids7] Cannady James, Next Generation Intrusion Detection: Autonomous Reinforcement Learning of Network
Attacks.

[ids8] Schuba Christoph L, Krsul Ivan V, Kuhn Marcus G, Spafford Eugene H, Sundaram Aurobindom, Diego
Zamboni: Analysis of Denial of Service Attack on TCP.

[ids9] Machine Learning Techniques for the Domain of Anomaly Detection for Computer Security

[ids10] Northcutt Stephen, Cooper Mark, Fearnow Matt, Karen Fredrick. Intrusion Detection Signatures and
Analysis. Chpt 10-11

[ids11] 0x0b[0x10], A STRICT ANOMOLY DETECTION MODEL FOR IDS, Volume 0xa Issue 0x
05.01.2000 - P H R A C K M A G A Z I N E –

__

Page 78 of 184

[ids12] The Base-Rate Falacy and its implications for the difficulty of Intrusion Setection

[nn0] Bishop Christopher M: Neural Networks for pattern recognition Chpt 8.

[nn1] Jeffrey Elman, Finding Structure in Time, 1990.

[nn2] Danilo P. Mandic, Jonathon A. Chambers. Recurrent Neural Networks for prediction. Learning
Algorithms, Architectures and stability chpt 5.

[nn3] Principe Jose C, Euliano Neil R, Lefebvre W Curt. Neural and Adaptive Systems Chapter 6, Chapter 3;

[nn4] Russel Stuart, Norvig Peter. Artificial Intelligence A Modern Approach.

[nn5] Ellis David. Non-Symbolic AI assignment; Training Algorithms for MLP networks.

[nn6] Recurrent Networks [1,2,3], http://www.williamette.edu/~gorr/classes/cs449/rnn1.html up on 22/12/01

[nn7] Haselsteiner Ernst, What Elman Networks Cannot Do.

[n0] Stevens W. Richard: TCP/IP Illustrated Volume 1, The Protocols, Volume 2 The implementation, Volume
3 TCP for transactions, HTTP, NNTP and UNIX domain protocols.

[n1] Packet Capture with libpcap and other low level network tricks.

[n2] W. Richard Stevens. TCP/IP Illustrated Volume 3. Chapters 12/13 (HTTP Protocol/Packets found on an
HTTP server).

[n3] RFC HTTP/1.1.

[n4] http://www.mit.edu/people/mkgray/net/web-growth-summary.html up on 22/12/01

[r1] Gamma Erich, Helm Richard, Johnson Ralph, Vlissides John, Design Patterns 1995. Pages 293-314.

[r2] Perdita Stevens,Pooley Rob, Using UML.

Appendices__

Page 79 of 184

10 Appendices

10.1 Source Code

10.1.1 WebIDS version 2 – Final Version

Appendices__

Page 80 of 184

10.1.1.1 WEBIDS PACKAGE

Appendices__

Page 81 of 184

Appendices__

Page 82 of 184

Appendices__

Page 83 of 184

Appendices__

Page 84 of 184

Appendices__

Page 85 of 184

Appendices__

Page 86 of 184

10.1.1.2 WEBIDS.EVENTENGINE PACKAGE

Appendices__

Page 87 of 184

Appendices__

Page 88 of 184

Appendices__

Page 89 of 184

Appendices__

Page 90 of 184

Appendices__

Page 91 of 184

Appendices__

Page 92 of 184

Appendices__

Page 93 of 184

Appendices__

Page 94 of 184

Appendices__

Page 95 of 184

Appendices__

Page 96 of 184

10.1.1.3 WEBIDS.EVENTENGINE.PARSEHTTP PACKAGE

Appendices__

Page 97 of 184

Appendices__

Page 98 of 184

Appendices__

Page 99 of 184

Appendices__

Page 100 of 184

Appendices__

Page 101 of 184

Appendices__

Page 102 of 184

Appendices__

Page 103 of 184

Appendices__

Page 104 of 184

Appendices__

Page 105 of 184

Appendices__

Page 106 of 184

Appendices__

Page 107 of 184

Appendices__

Page 108 of 184

Appendices__

Page 109 of 184

Appendices__

Page 110 of 184

Appendices__

Page 111 of 184

Appendices__

Page 112 of 184

Appendices__

Page 113 of 184

Appendices__

Page 114 of 184

Appendices__

Page 115 of 184

Appendices__

Page 116 of 184

Appendices__

Page 117 of 184

Appendices__

Page 118 of 184

Appendices__

Page 119 of 184

Appendices__

Page 120 of 184

Appendices__

Page 121 of 184

Appendices__

Page 122 of 184

Appendices__

Page 123 of 184

10.1.1.4 WEBIDS.ANALYSISENGINE PACKAGE

Appendices__

Page 124 of 184

Appendices__

Page 125 of 184

Appendices__

Page 126 of 184

Appendices__

Page 127 of 184

Appendices__

Page 128 of 184

Appendices__

Page 129 of 184

Appendices__

Page 130 of 184

Appendices__

Page 131 of 184

Appendices__

Page 132 of 184

Appendices__

Page 133 of 184

10.1.2 WebIDS version 1 (aka IDSSystem) – Original Version (uses session based analysis).

Appendices__

Page 134 of 184

Appendices__

Page 135 of 184

Appendices__

Page 136 of 184

Appendices__

Page 137 of 184

10.1.3 WebIDS version 1 (aka IDSSystem) – Original Version (uses session based analysis).

Appendices__

Page 138 of 184

10.1.3.1 IDSSYSTEM PACKAGE

Appendices__

Page 139 of 184

Appendices__

Page 140 of 184

Appendices__

Page 141 of 184

Appendices__

Page 142 of 184

Appendices__

Page 143 of 184

Appendices__

Page 144 of 184

Appendices__

Page 145 of 184

Appendices__

Page 146 of 184

Appendices__

Page 147 of 184

Appendices__

Page 148 of 184

Appendices__

Page 149 of 184

Appendices__

Page 150 of 184

Appendices__

Page 151 of 184

10.1.3.2 IDSSYSTEM.EVENTENGINE

Appendices__

Page 152 of 184

Appendices__

Page 153 of 184

Appendices__

Page 154 of 184

Appendices__

Page 155 of 184

Appendices__

Page 156 of 184

Appendices__

Page 157 of 184

Appendices__

Page 158 of 184

10.1.3.3 IDSSYSTEM.ANALYSISENGINE

Appendices__

Page 159 of 184

Appendices__

Page 160 of 184

Appendices__

Page 161 of 184

Appendices__

Page 162 of 184

Appendices__

Page 163 of 184

Appendices__

Page 164 of 184

Appendices__

Page 165 of 184

Appendices__

Page 166 of 184

Appendices__

Page 167 of 184

Appendices__

Page 168 of 184

Appendices__

Page 169 of 184

Appendices__

Page 170 of 184

Appendices__

Page 171 of 184

Appendices__

Page 172 of 184

10.2 Literature Survey Research Comments by D.Ellis

This literature survey is divided into three sections; the first section refers to material covering security
exploits that pose threats to computer systems. These include tutorials on buffer overflows, Unicode, CGI
exploits and format string exploits.

The second section covers current Intrusion Detection research; some of the papers in this section include
the use of Neural Networks to analyze various types of data. Others cover various types of intrusion
detection system, ranging from network intrusion detection systems to log and host-based systems as well as
systems that correlate all these types of data.

The third section is to do with Neural Networks; it contains papers, books and articles referring to various
types of neural network. Most of the material in this section covers recurrent Neural Networks.

The fourth and final section covers material on networks particularly TCP/IP networks and HTTP the
protocol.

10.2.1 Security Exploits

[se0] Phrack 49 Oo Vol 7 Issue 49 Smashing the Stack for fun and profit
This is a tutorial on writing buffer overflow exploits by “smashing the stack”. Very good reference for attack signatures of buffer overflows.

[se1] Mudge: How to write Buffer Overflows Tutorial
Self expalanator, paper on how to find and write buffer overflow exploits.

[se2] scutt/team teso, Exploiting Format String vunerabilities.
This is an excellent tutorial about a fairly recent type of vulnerability concerning printf and its relatives.

[se3] rain.forest.puppy, Perl CGI problems, Phrack Issue 55

Explains some exploits for perl program;

• The use of \0 is different from c. (end of line in c). Therefore allowing you to enter a string in which is say root\0garbabe, the perl
scanner may say is it “root” and of course it is not! The c program this is passed to will simply read it as “root” and the security
check has been bi-passed.

• The use of directory traversals, and how to escape them etc. A program may use directory traversal in order to jump out of the
standard web root directory into the main part of the system, this allows the user to execute arbitrary commands, the directory must
be executable and the commands the attacker wishes to execute must be chmod’ed correctly.

• Use of pipe to get perls’ open() to execute a program, i.e. open(“/bin/sh|”). This allows a user to execute arbitrary commands, if it is
known that the open call is used, and a cgi parameter is taken in representing some file, a pipe command will open the file as a
command.

[se4] Gregory Gilliss, CGI Security Holes, Phrack Magazine,Volume Seven, Issue Forty-Nine

Explains some more cgi exploits;

• A bad choice of functions to use i.e. System calls provides possible security breaches.
• Redirects > in scripts allow the redirecting of the standard output causing files to be read.
• The use of null , again in perl provide a potential for poorly scanned input data to execute malicious code.
• Also outlines people grabbing password files.

[se5] rain.forest.puppy, NT Web Technology Vulnerabilities, Phrack Magazine, Volume 8, Issue 54 Dec 25th, 1998

This paper iterates some interesting vunerabilities in Microsoft’s IIS Web Server.

These do apply to any out of the box setup.

Appendices__

Page 173 of 184

• Standard scripts can be a problem. If the site is using a standard scripts and a hole has been discovered in this script, the attacker
potentially has access to the source code of the script and can look for security vulnerabilities in it.

• IIS contained a security threat where it was possible to look in say c:\winnt\system32 or whatever, on any IIS Web Server.
• Using directory traversals. ../ has been a classic for IIS; many such vulnerabilities exist.
• Executing SQL Query’s through IIS was a bug which allows an attacker to issue any queries to the database.[se6] Scambray Joel,

McClure Stuart and Kurtz George: Hacking Exposed

This book is a catalogue of exploits classifying them into various types of attack. It is quite useful for an overview of the area but contains little
technical information with which to work with.

[se7] horizon jmcdonal@unf.edu, Defeating Sniffers and Intrusion Detection Systems,Phrack Magazine Volume 8, Issue 54 Dec
25th, 1998, article 10 of 12

This paper talks about various ways to defeat Sniffers and IDS’s;

• Fragmentation of TCP segment headers. This means, if the IDS is not capable of fragment reassembly packets, malicious packets can
pass through fine.

• Bad stack decoding/cost extra options in IP header. Most systems use a naïve approach to stack decoding, as most IP packets don’t
contain things like options. If this is the case putting options in may lead the IDS to misinterpret the packet.

• Invalid sequence numbers. This can cause the IDS to crash if it doesn’t contain a robust enough stack decoder.
• Many systems can launch off on wrong track, once spawned they will look at the TCP Session leaving malicious packets to sail

through.
• De-Synchronization of TCP sequence numbers can cause the IDS to become confused.
• TCP checksum insertion. Invalid checksums can cause the IDS to slow down and possibly allow packets through.

[se8] HTTP://www.theregister.co.uk/content/archive/22010.html

Top Vulnerabilities at the moment;

• Default installs of operating systems and applications.
• Accounts with No Passwords or Weak Passwords.
• Non-existent or Incomplete Backups.
• Large number of open ports.
• Not filtering packets for correct incoming and outgoing addresses.
• Non-existent or incomplete logging.
• Vulnerable CGI Programs

Top Windows vulnerabilities

• Unicode Vulnerability (Web Server folder traversal).
• ISAPI extension buffer overflows.
• IIS RDS exploit (Microsoft Remote Data Services).
• NETBIOS - unprotected Windows networking shares.
• Information leakage via null session connections.
• Weak hashing in SAM (LAN Manager hash).

Top Unix system vulnerabilities

• Buffer overflows in RPC services.
• Sendmail vulnerabilities.
• BIND weaknesses.
• Remote commands.
• LPD (remote print protocol daemon).
• sadmind and mountd.
• Default Simple Network Management Protocol (SNMP) strings.

Appendices__

Page 174 of 184

10.2.2 Intrusion Detection Systems

[ids0] Helmer Guy G, Wong Johny S.K, Honavar Vasant and Miller Les. Intelligent Agents for Intrusion Detection. Ames, Iowa.
Interesting idea, taking a number of distributed IDS’s and using them correlate the data together, to get a better model of the usage of the
system. Uses System call traces, instead of live TCP/IP analysis.

[ids1] Cannady James, Artificial Neural Networks for Misuse Detection.
This paper iterates the issue of identifying the attack accurately and quickly. It compares Expert System approaches against Neural Networks.

Expert Systems - identifies exact matches by following list of rules and determining whether an attack is being attempted or not.
Disadvantages include:

• Must add in attacks as they are discovered.

The use of Neural Networks identifies a probability of the attack matching a previously seen pattern, therefore the quality of the network is
based on how much it has seen previously.

Disadvantages of this approach include;

• The system is a Black Box. It is difficult to know what it is doing.
• Attack traces are difficult to obtain.

The paper discusses Misuse detection, again re-iterating the fact that a sequence of events warrants an intrusion. It re-iterates the fact that
once an exploit is found, many others will use it giving a motivation for using misuse detection.

The paper gave some good ideas for collecting training data. Namely ISS Internet Scanner, Satan. It also gives a way of encoding the Data
into the Neural Net which is worth reading when developing such a system.

References Worth Chasing:

[2] Computer Vision Material[6] International joint conference on Neural Networks Recurrent Networks[7] Computers and Security
Vol 13 No 6 pp 495-507[8] An Intrusion Detection Model IEEE Transactions on Software Engineering, Vol SE-13 No 2.[9] TISC[14]
QStat [25][26]

[ids2]Balasubramaniyan Sundar Jai, Garcia-Fernandez Omar Jose, Isacoff David, Spafford Eugene, Zamboni Diego, An
Architecture for Intrusion Detection using Autonomous Agents.
The paper gives a definition of Intrusion Detection;

“Problem of identifying individuals who are using a computer system without authorization, and those who are abusing their rights on the
system (“escalation of priveledges.”

The paper goes on to state that Intrusion Detection is not prevention, and provides some desirable characteristics of an IDS;

• Always running
• Fault tolerant
• Resist Subversion (Attacks on IDS)
• Minimal overhead
• High Scalability
• Degradation of service should not affect the rest of the network.
• Dynamic configuration

The paper goes on to review the use a Distributed IDS versus a Monolithic [15] approach. The problems which were identified with centralized
system include;

• One point of failure.
• Scalability problem, what happens when we want to increase the system to run on a bunch of machines.
• Analysis of network data can be flawed.
• Such a system is vulnerable to Insertion/Evasion attacks.

The paper gave a good reference to a paper on Genetic Programming for Intrusion Detection [3].

Other issues which they consider in the system;

• Portability
• Scalability
• Security
• Performance

Appendices__

Page 175 of 184

[ids3] Ghosh Anup K, Schwartzbard Aaron and Schatz Michael, Learning Program Behavior profiles for Intrusion Detection.

The system described in the paper is part of the DARPA Intrusion detection evaluation program. DARPA provide such systems with data for
training and testing their systems.

They talk about Anomaly Detection and Misuse Detection, Misuse Detection tends to give low false positive and high false negative (many
attacks get through, but ones that don’t are identified correctly). Anomaly detection tends to give high false positive rates, has an inability to
identify a particular attack. Must make sure training data is clean.

Strace – program that logs system calls was used in their investigation therefore it is a host based system. They iterate that Deterministic Finite
State Automatons constructed by hand state result in state explosion these problems are described in [6]. They back up their reasoning of using
system call traces by stating;

“A program can only abuse a system by making system calls.”

They also talk about the time aspect of an attacker;

“Anomalous behavior tends to come in clusters.”

The paper discusses the use of Back Prop examples in [7,1]. They then talk about recurrent Neural Nets such and implement the Leaky Bucket
algorithm, used in temporal locality detection, and Elman networks- recurrent nets (look into these further).

[ids4] Ghosh Anup K and Schwartzbard Aaron, A Study using Neural Networks for Anomaly and Misuse Detection.

This is another DARPA project using their evaluation data again, the work is from Lincoln Labs at MIT. The paper iterates issue of being able
to detect future unseen behavior rather than previously known attacks. The paper emphasizes the importance of low false alarm rates; high
false alarm rates make IDS’s impractical due to the amount of work the system admin must do.

The paper talks about the importance of being able to generalize over the input, i.e.

• Detecting future normal behavior.
• Detecting future abusive behavior.

The paper discusses the first proposal of Anomaly Detection, by Anderson in 1980- check out. It also discusses Expert System Anomaly
detection models in [15].

The paper talks about a number of classes of attacks and informs the reader on the performance of the system with regard to a number of
classes these include;

• DOS
• Probing /Surveillance
• Remote to local
• User to root

They also talk about the distinction between Network / Host based systems and draw conclusions as to their uses. The paper also interestingly
talks about the human immune system [6] and its application to this topic, distinguishing between self and non-self.

They include a discussion of the anomaly detection model they use;

1. Initialize NN with random data.
2. Train with normal data, so one area of the input space becomes identified with normal data. Temporal Locality problem again, leaky

bucket algorithm is used.
3. ROC Curves Receiver Operating Characteristics. This seems to be industry standard for showing IDS results.

The paper concludes by talking about their results, the misuse fails to generalize well and gives high false positives.

[ids5] Ranum J Marcus, LangField Kent, Stolarchuk Mike, Sienkiewicz Mark, Lambeth Andrew, Wall Eric, Implementing a
Generalized tool for network monitoring.

This system is essentially a statistics gathering engine, shows a programming language for pulling packets apart and recording information or
dropping them. Mentions libpcap, a useful interface as it exists on all UNIX systems and can be found for windows. The paper outlines the risk
of buffering a loss of packets.

Appendices__

Page 176 of 184

[ids6] Paxton Vern Bro: A System for Detecting Network Intruders in Real-Time

This is an intrusion detection language similar to [ids5]. However it is more advanced, it is based on rules that are coded using the language
Bro, this also uses libpcap.

[ids7] Cannady James, Next Generation Intrusion Detection: Autonomous Reinforcement Learning of Network Attacks.

This paper outlines an interesting approach to detecting intrusions, very different from anything else seen so far. It uses an unsupervised
Neural Network. This system works only with DOS attacks however.

The paper describes the use of CMAC Neural Networks. These could be useful and are worth investigating.

The system uses network de-gradation to train the system dynamically to detect intrusion.

[ids8] Schuba Christoph L, Krsul Ivan V, Kuhn Marcus G, Spafford Eugene H, Sundaram Aurobindom, Diego Zamboni:
Analysis of Denial of Service Attack on TCP.

The paper involves a detailed explanation of the SYN flood attack, and ways to detect and resolve the threat. The presented solution involves
basically by returning fake ACK’s and waiting for the real ones later, to move connections to full open state.

[ids9] Machine Learning Techniques for the Domain of Anomaly Detection for Computer Security

This document involves a detailed discussion of AI techniques for anomaly detection, useful for ideas on types of machine learning. It talks
about rule based /statistical models as well as the adaptive systems approach.

[ids10] Northcutt Stephen, Cooper Mark, Fearnow Matt, Karen Fredrick. Intrusion Detection Signatures and Analysis. Chpt 10-
11

This book takes you through a number of log file formats including tcpdump output, SNORT output etc. It talks you through the kinds of things
to look for in looking for attack signatures

Attacks of interest include;

• DOS attacks – resource starvation versus bandwidth consumption.
• Land Attack- exploit code at ftp.technotronic.com.
• TOS bit was set to 0x30 for UDP. (Abnormal packet).
• Winnuke – URG to netbios port. This causes the netbios to expect data. The data never comes and RST packet is sent. Causing “blue

screen of death”.

[ids11] 0x0b[0x10], A STRICT ANOMOLY DETECTION MODEL FOR IDS, Volume 0xa Issue 0x 05.01.2000 - P H R A C
K M A G A Z I N E –

This paper describes a model of anomaly detection. Phrack people don’t seem to like the author! Doesn’t really give any relevant information.

[ids12] The Base-Rate Falacy and its implications for the difficulty of Intrusion Setection

This paper outlines an important point that the false alarm rate must be tiny for the system to be of any use. Uses Bayes theorem to show how
ineffective a 99% accurate system is.

Appendices__

Page 177 of 184

10.2.3 Neural Network material

[nn0] Bishop Christopher M: Neural Networks for pattern recognition Chpt 8.

This book is the definitive book on Neural Networks.

Chapter 8 gives an enlightening discussion of pre and post processing of data when using ANN’s.

Points that were useful included;

• Fewer inputs mean less dimensions, and therefore higher degree of generalization, and the system will train faster.
• Pre-processing of data means less information and decreases dimensionality and so the above point

applies.
• Re-scaling of input parameters so they are of similar range, makes the Neural Network more likely

to work quicker and be more accurate.

Chpt 4. Gives a detailed discussion of MLP’s

This chapter contains the necessary literature to understand and implement back propagation.

Page 267.

This page provides a discussion of the use of a momentum term in Back Propagation algorithm.

[nn1] Jeffrey Elman, Finding Structure in Time, 1990.

This paper gives an interesting proposal for a Neural Network architecture capable of finding structure in time. He goes through a number of
ways to represent time in Neural Networks these include;

1. Explicit serial order with dimensionality of inputs.

The problems with this approach include;

o input buffer.
o When should contents be examined.
o Rigid enforcement of duration.
o Does not distinguish between relational/absolute outputs.

Elman proposes the use of an extra layer of “context units”. These units are designed to capture internal state at each activation of the
network. At each pass internal state is saved, thus representing temporal properties of sequential inputs. He concludes by discussing the
change in the structure of the problem when represented temporally.

[nn2] Danilo P. Mandic, Jonathon A. Chambers. Recurrent Neural Networks for prediction. Learning Algorithms, Architectures and stability
chpt 5.

This book discusses Recurrent Neural Networks and provides a number of architectures. It contains a discussion of the difference between feed
forward vs Recurrent Neural Nets and indicates where both such topologies are useful;

• Recurrent Neural Nets suffer from instability and are sensitive to noise
• Feed Forward Neural Nets may not be powerful enough to capture the dynamics of the problem.

It outlines how the Dynamics and/ complexity of a problem is implementation dependant and therefore each problem requires a different Neural
Net.

Recurrent Neural Network Architectures discussed in the book include;

Activation feedback
Output feedback
Locally Recurrent Globally feedforward category.
Elman/Jorden – limited in storing past information.
William Zipster Network— captures more info.

Appendices__

Page 178 of 184

[nn3] Principe Jose C, Euliano Neil R, Lefebvre W Curt. Neural and Adaptive Systems Chapter 6, Chapter 3;

This book gives a good discussion and the necessary technical detail to implement Unsupervised Neural Networks. In particular Hebbian
learning, Oja/Sangers rule and their use for PCA.

[nn4] Russel Stuart, Norvig Peter. Artificial Intelligence A Modern Approach.
This book provides the Back Propagation equations necessary to implement a Back Propagation algorithm.

[nn5] Ellis David. Non-Symbolic AI assignment; Training Algorithms for MLP networks.

This document compares a genetic algorithm with standard Back Propagation and Back Propagation with momentum.
[nn6] Recurrent Networks [1,2,3], http://www.williamette.edu/~gorr/classes/cs449/rnn1.html up on 22/12/01
Discussion of Recurrent Networks, back prop through time and patterns in time.

[nn7] Haselsteiner Ernst, What Elman Networks Cannot Do.

This paper shows a group of tasks which Elman networks are incapable of learning.

Appendices__

Page 179 of 184

10.2.4 Computer Networks and Services

[n0] Stevens W. Richard: TCP/IP Illustrated Volume 1, The Protocols, Volume 2 The implementation, Volume 3 TCP for
transactions, HTTP, NNTP and UNIX domain protocols.
These books provide an in depth guide to TCP/IP protocols, very useful for working out how TCP/IP works and some useful tricks in the
implementation of TCP.

[n1] Packet Capture with libpcap and other low level network tricks.
This is a great tutorial showing you how to write a packet capture engine, using libpcap in c.

[n2] W. Richard Stevens. TCP/IP Illustrated Volume 3. Chapters 12/13 (HTTP Protocol/Packets found on an HTTP server).
This is a great book focusing on application level protocols. Statistics for internet services usage were reported outlining the growth of the
HTTP protocol;
 ftp://ftp.merit.edu/statistics - nfs back bone closed in 1995.

Talks about HTTP/1.0;

• Multiple connections.(not persistant HTTP/1.0)
• Congestion avoidance and rtt etc. not passed on to all connections.
• Vunerable to lots of open half connections

The Concept of a “Session” in HTTP was discussed and mentions;

(Kwan McGrath and Reed 1995. User Access Patterns to NCSA’s World Wide Web server.)

The book outlines the problem with one doc per connection, it reacts badly with TCP as slow start and all the other things are not shared
between connections. Keeping connection open if cache size of response is known was also discussed.

[n3] RFC HTTP/1.1.
The Request For Comment on HTTP/1.1 protocol. Main points that were found useful;

• Connections now persistent by default. Before one connection was made for every request.(Memory/cpu time saved for
Clients/servers/gateways/proxies/routers).

• Pipe-lined requests possible. This allows multiple connections to open from the same client making a number of requests.
(Congestion reduced.)

• Latency better, as there are less half open connections about.
• HTTP’s evaluation better is better.
• Connection header field, explicitly close connection. HTTP/1.0 assumed the connection will close, HTTP/1.1 says user must explicitly

close it.

The RFC states includes the grammar for HTTP which was used in the implementation of WebIDS.

[n4] http://www.mit.edu/people/mkgray/net/web-growth-summary.html

This site gives out statistics on what internet services people are using. It is very useful for determining the most popular serv

__

Page 180 of 184

10.3 Excess Test data

10.3.1 Selected URLS and their classifications via the MLP network

/ContentManagement_Local/QuoterEngine/inc/stdlib.js 2.16E-05
/ContentManagement_Local/QuoterEngine/inc/validate3.js 5.90E-06
/ContentManagement_Local/default.asp?qtbid=5&qtcid=QL&qtqecid=63&qtspecid=&qtspecqmid=
 3.56E-05
/ContentManagement_Local/Brands/BuildersDirect/scripts/GeneralUtility.js 1.80E-05
/ContentManagement_Local/QuoterEngine/inc/stdlib.js 2.16E-05
/ContentManagement_Local/QuoterEngine/inc/validate3.js 5.90E-06
/ContentManagement_Local/default.asp?qtbid=5&qtcid=QL&qtqecid=63&qtWizardPage=37&qtspecqmid=
 4.02E-05
/ContentManagement_Local/Brands/BuildersDirect/scripts/GeneralUtility.js 1.80E-05
/ContentManagement_Local/QuoterEngine/inc/stdlib.js 2.16E-05
/ContentManagement_Local/QuoterEngine/inc/validate3.js 5.90E-06
/ContentManagement_Local/Brands/BuildersDirect/scripts/GeneralUtility.js 1.80E-05
/ContentManagement_Local/QuoterEngine/inc/stdlib.js 2.16E-05
/ContentManagement_Local/QuoterEngine/inc/validate3.js 5.90E-06
/ContentManagement_Local/QuoterEngine/Images/16x16Note.gif 4.66E-05
/scripts/..%c1%1c../winnt/system32/cmd.exe?/c+dir 3.889031336
/scripts/..%c1%1c../winnt/system32/cmd.exe?/c+dir 3.889031336
/scripts/..%c1%1c../winnt/system32/cmd.exe?/c+dir 3.889031336
/scripts/..%c0%af../winnt/system32/cmd.exe?/c+dir 3.865881341
/%20scripts/..%c1%9c../winnt/system32/cmd.exe?/c+dir 3.887250169
/scripts/..%25%35%63../winnt/system32/cmd.exe?/c+dir 3.906648224
/scripts/root.exe?/c+dir 3.983254482
/scripts/root.exe?/c+dir 3.983254482
/scripts/root.exe?/c+dir 3.983254482
/c/winnt/system32/cmd.exe?/c+dir 3.984855172
/d/winnt/system32/cmd.exe?/c+dir 3.987073659
/scripts/..%255c../winnt/system32/cmd.exe?/c+dir 3.905079296
/_vti_bin/..%255c../..%255c../..%255c../winnt/system32/cmd.exe?/c+dir 3.999631297
/msadc/..%255c../..%255c../..%255c/..%c1%1c../..%c1%1c../..%c1%1c../winnt/system32/cmd.exe?/c+
dir 3.877184856
/ContentManagement_Local/QuoterEngine/Content/GlossaryPopup.asp?Term=Paint 6.61E-06
/ContentManagement_Local/QuoterEngine/inc/stdlib.js 2.16E-05
/ContentManagement_Local/QuoterEngine/inc/stdlib.js 2.16E-05
/ContentManagement_Local/QuoterEngine/inc/validate3.js 5.90E-06
/ContentManagement_Local/default.asp?qtbid=5&qtcid=QL&qtqecid=23 9.04E-05
/ContentManagement_Local/default.asp?qtbid=5&qtcid=QL 1.53E-04
/ContentManagement_Local/Brands/BuildersDirect/scripts/GeneralUtility.js 1.80E-05
/ContentManagement_Local/QuoterEngine/inc/stdlib.js 2.16E-05
/ContentManagement_Local/QuoterEngine/inc/validate3.js 5.90E-06
/ContentManagement_Local/default.asp?qtbid=5&qtcid=QL&qtqecid=23 9.04E-05
/ContentManagement_Local/Brands/BuildersDirect/scripts/GeneralUtility.js 1.80E-05
/ContentManagement_Local/QuoterEngine/inc/stdlib.js 2.16E-05
/ContentManagement_Local/QuoterEngine/inc/validate3.js 5.90E-06
/ContentManagement_Local/default.asp?qtbid=5&qtcid=QL&qtqecid=64 5.77E-05
/ContentManagement_Local/Brands/BuildersDirect/scripts/GeneralUtility.js 1.80E-05
/ContentManagement_Local/QuoterEngine/inc/stdlib.js 2.16E-05
/default.ida?NNN
NN
NNN%25u9090%25u6858%25ucbd3%25u7801%25u9090%25u6
858%25ucbd3%25u7801%25u9090%25u6858%25ucbd3%25u7801%25u9090%25u9090%25u8190%25u00c3%25u0003%25
u8b00%25u531b%25u53ff%25u0078%25u0000%25u00=a 3.995857781
/ContentManagement_Local/default.asp?qtbid=5&qtcid=QL 1.53E-04

__

Page 181 of 184

10.3.2 Graph to show exploits being detected

Graph to show how the MLP Analyser is able to pick out attacks

0.00E+00

5.00E-01

1.00E+00

1.50E+00

2.00E+00

2.50E+00

3.00E+00

3.50E+00

4.00E+00

4.50E+00

/C
on

te
nt

M
an

ag
em

en
t_

Lo
ca

l/B
ra

nd
s/

Bu
ild

er
s

/C
on

te
nt

M
an

ag
em

en
t_

Lo
ca

l/Q
uo

te
rE

ng
in

e/
i

/s
cr

ip
ts

/..
%

c1
%

1c
../

w
in

nt
/s

ys
te

m
32

/c
m

d.
ex

e

/s
cr

ip
ts

/..
%

c1
%

1c
../

w
in

nt
/s

ys
te

m
32

/c
m

d.
ex

e

/%
20

sc
rip

ts
/..

%
c1

%
9c

../
w

in
nt

/s
ys

te
m

32
/c

m
d

/s
cr

ip
ts

/ro
ot

.e
xe

?/
c+

di
r

/s
cr

ip
ts

/ro
ot

.e
xe

?/
c+

di
r

/d
/w

in
nt

/s
ys

te
m

32
/c

m
d.

ex
e?

/c
+d

ir

/_
vt

i_
bi

n/
..%

25
5c

../
..%

25
5c

../
..%

25
5c

../
w

in
nt

/

/C
on

te
nt

M
an

ag
em

en
t_

Lo
ca

l/Q
uo

te
rE

ng
in

e/
C

/C
on

te
nt

M
an

ag
em

en
t_

Lo
ca

l/Q
uo

te
rE

ng
in

e/
i

/C
on

te
nt

M
an

ag
em

en
t_

Lo
ca

l/d
ef

au
lt.

as
p?

qt
bi

/C
on

te
nt

M
an

ag
em

en
t_

Lo
ca

l/B
ra

nd
s/

Bu
ild

er
s

/C
on

te
nt

M
an

ag
em

en
t_

Lo
ca

l/Q
uo

te
rE

ng
in

e/
i

/C
on

te
nt

M
an

ag
em

en
t_

Lo
ca

l/B
ra

nd
s/

Bu
ild

er
s

/C
on

te
nt

M
an

ag
em

en
t_

Lo
ca

l/Q
uo

te
rE

ng
in

e/
i

/C
on

te
nt

M
an

ag
em

en
t_

Lo
ca

l/B
ra

nd
s/

Bu
ild

er
s

/d
ef

au
lt.

id
a?

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

/C
on

te
nt

M
an

ag
em

en
t_

Lo
ca

l/B
ra

nd
s/

Bu
ild

er
s

Series1

We can see the ease at which the MLP is able to pick out the Code Red and Nimbda attacks.

__

Page 182 of 184

10.4 Glossary
Anomaly
Detection Model

Where a system is trained with normal data, following this it is able to detect deviations
from the normal.

Attack Attempt to misuse or compromise a computer system in any way.

Attacker
An attacker is a person or program that has purposely set out to misuse a computer

system in some way.

CGI
Common Gateway Interface, The interface specification defining how information can be
passed back and forth from browser to client.

Correctness The percentage of correctly identified attacks the system has made

Data sets The data used to train a neural network, usually labelled with the correct classification.

False Negatives The number of anomalous sessions incorrectly identified as normal sessions.

False Positives The number of normal sessions incorrectly identified as anomalous sessions.

Firewall A Program or piece of hardware which filters packets before forwarding them onto a host.

Fragmentation
Where packets are broken up and sent in separate IP packets, the application must re-
assemble the packet on arrival. Note TCP headers may be fragmented.

Generalisation
The ability to generalise input over passed seen behaviour. For example if you see one
cat you can then identify any cat you see in the future as a cat.

HTTP Hyper Text Transfer Protocol - The protocol of the World Wide Web.

HTTP message The message sent back and forward from HTTP server to client.

HTTP request
The HTTP message sent to a web server asking for a particular resource from the server,
such as a web page.

HTTP Session
The collection of HTTP messages exchanged between server and client during one clients
active session.

Hyper-plane
a plane of seperation through data points in d-dimensional space, a 3d hyperplane is a
plane, a 2d hyperplane is a line.

IDS Intrusion Detection System - System used to detect intruders to a computer system

IP Spoofing
Where an IP packet appears to have been dispatched from a different host from the one it
was actually dispatched from.

javacc
The java compiler compiler - given a grammar in ebnf style notation will generate an
appropriate parser

JPCap A packet capture library for Java.
Linearly
Separable

Where there exists a single hyper-plane of seperation between data points in d
dimensional space.

Misuse
detection model

Where a system is trained with a number of instances of misuse, the system will then
detect whether new data is an instance of misuse, by determing its similarity to the
instances of misuse.

Packet Sniffer A program which intercepts data packets on a computer network.

Promiscuous
A class of learning algorithm where the weights are adjusted according the known ideal
outcomes of the input sequence.

Proxy server A server that makes connections to other hosts on behalf of a client.
Supervised
Learning

A form of learning for Neural Networks, where the Neural Network is adjusted precisely
due to the error of its outputs.

Tcpdump Tcpdump is a popular Unix program for dumping network traffic.

The Service The same as “The System”

The System
The product that is being developed, i.e. an intrusion detection system using the anomaly
based model with a neural network analysis engine.

Weight matrix
In neural networks, the internal set of weights, which describe the input/output mapping
of the network.

__

Page 183 of 184

10.5 User Manual

10.5.1 Installation

Installation of the system requires the following system capabilities;

• Java Software Development Kit Version 2 or above.
• The libpcap for UNIX or winpcap for Windows environment.
• The JPCap library – the libpcap interface to java.
• A 486 or above preferably running Linux, MS Windows is ok.
• An Ethernet Card connected to an Ethernet Network.
• If the system is to be deployed as part of a firewall, a second Ethernet Card is

required.

To install the system then follow these simple instructions;

1. Set up your java system (follow instructions which come with java).
2. Set up libpcap/winpcap (follow instruction which come with these).
3. Unzip the file webids.zip into the directory you wish to deploy the system. We

recommend /usr/sbin/. Make sure the classpath has been set to this directory.
4. The system is now ready for training.

10.5.2 Configuring using the WiComponentFactory class

The WiComponentFactory class contains a number of methods which return the correct
objects for the rest of the system. A list of the available EvReaders and AeAnalysers are
available for you to choose;

In the method makeAnalyser the following analysers can be used (AeAnalyserDump) is used
here.

 // uncomment if you want an MLP Neural Network analyser
 //return aemlp;
 // uncomment if you want the PCA Neural Network
 //return aepca;
 // uncomment if you want the MLP with PCA pre-processor
 //return aepcamlp;
 // uncomment if you would like the group occurence analyser.
 //return aegc;
 // uncomment if you want the dump analyser.
 return aedump;

In the method makeReader the following readers can be used;

 // uncomment if you wish to use a TCP/IP socket
 return new EvReaderSocket();
 // uncomment if you want to read from text files.
 //return new EvReaderText();
 // uncomment if you want to read raw packets from the ethernet card.
 //return new EvReaderJPCap();

__

Page 184 of 184

10.5.3 Collecting the training data

To collect the training data, you must first configure the system to use the correct EvReader
and AeAnalyser. Edit the WiComponentFactory class by un-commenting the
AeAnalyserDump analyser. The EvReader class you use depends on where the data is to be
collected from.

By default the system dumps the HTTPRequest strings into the file aedump.log. This may be
changed by adding the filename where you wish to dump the requests to in the constructor of
the object;

AeAnalyser aedump = new AeAnalyserDump(filename);

To begin collecting the data, at the prompt type;

tsunx%java WebIDS.WiOpenLive

This will begin capturing the data and writing to the specified file and to the console. The
program will run until the original source you are reading from returns or you type ^C.

10.5.4 Training

1. The training phase is easy, first open up WiComponentFactory and select the

analysers and readers you wish to use.
2. Then create a directory by the name of the site you want to train, e.g. if you want to

train the system on a site called trends.com we would call the directory Trends.
3. Then create two sub directories, one called normal and one called anomalous.
4. Copy the trace data you have collected into the normal and anomalous sub directories

as required.
5. Then at the prompt type; tsunx%java.WebIDS.TrainEnv

This will provide statistics for later analysis and drop them to various files. Look in the
source of the individual analysers to discover the format of the statistics produced.

10.5.5 Testing

Tests can be run as though the system is in a live state, except a set of marked dump files
should be used. This will generate a load of logs, as though the system was being attacked
which you can analyse and determine the performance of the system.

10.5.6 Deploying

1. The system can be deployed by simply configuring the WiComponentFactory class.
2. Then type at the prompt; tsunx%java WebIDS.OpenLive

