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2 Summary 
 
This project investigates the field of Intrusion Detection.  In particular it looks at attacks 
against the Web Server, which arrive over the HTTP protocol.  After reading about a number 
of exploitable programs which typically reside on a Web Server an interesting observation 
was made, it seems that the URL of an attack is very different from that of a normal request.  
With this in mind, an appropriate representation of the URL string was formed and a number 
of Analysis techniques were investigated. 
 
A framework with which to carry out the investigation within was designed and 
implemented.  It provides us with an environment for testing a variety of techniques in order 
to distinguish between a normal URL and an attack.  The framework consists of two main 
sections, the Event Engine and the Analysis Engine. 
 
The Event Engine provides us with a way to read data into the system and fire appropriate 
events on the introduction of and analysis of data.  Three such readers were implemented, a 
Packet Sniffer which reads raw data from the network interface or appropriate trace file, a 
Proxy Server which reads from a TCP/IP socket and a reader which reads from a log file 
format. 
 
The Analysis Engine provides a way to analyze the data and pass the results of the analysis 
back to the Event Engine.  Several types of Neural Network were incorporated into the 
system. Including a Multi-Layer Perceptron (MLP) implemented with Back Propagation and 
a Genetic Algorithm as training algorithms.  As well as an unsupervised Neural Network 
implementing Sangas rule for performing PCA on the data, the K-Nearest Neighbours 
algorithm was used here to perform the final classification of the data.  Other techniques that 
were tested included the use of simple occurrences of important letter groups; such as vowels 
and digits.  Finally the investigation involved a look at recurrent Neural Networks namely the 
Elman Network was investigated. 
 
Each of the techniques was tested on a number of Web Sites each of which varied in the 
complexity of the URL string.  We ranged the sites from simple static web sites to highly 
complex sites with database driven back-ends. 
 
We found very promising results came from the use of MLP networks.  The Neural Network 
was capable of making highly accurate classifications of attacks and normal data.  After 
analysing the data further with PCA we discovered the ten Principle Components and found 
they correlated well with the data we had, and gave us insight into the working of the Neural 
Net.  When plotting the PCA data in 2-dimensional space; we found a highly complex search 
space that didn’t give much of a clue as to what was going on.  Use of the K-Nearest 
Neighbours algorithm revealed promising results, but were somewhat worse compared to the 
MLP network.  The final test that was applied was to attempt to use the PCA network as a 
pre-processor for the MLP network, this failed miserably. 
 
In conclusion we discuss the results found and the importance of the design of the URL 
strings for the web site we are protecting.  We re-iterate the success of the MLP Neural 
Network at providing a highly accurate classification of attacks.  Finally we discuss future 
work in this area, in particular the use of a distributed architecture for the analysis, as well as 
further work on the use of Recurrent Neural Nets. 
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3 Introduction 
 
The accurate and timely identification of an intruder has become of paramount importance 
over the past decade as the advent of the Internet has brought with it a new breed of 
criminals.  The importance of protecting your computer system from hackers has become 
greatly increased as communication channels that are available both for the distribution of 
malicious software, and expertises in exploitation of computer systems have opened up. 
 
With the emergence of the World Wide Web many attackers have focused their attention on 
the Web Server and its associated programs.  This project hopes to address this problem. 
 
Many existing systems that address the issue of Intrusion Detection tend to focus on attack 
signatures.  When someone discovers an exploit for some piece of software, traces of the 
attack is left in log files.  The Intrusion Detection System then looks for this “signature”.  
There is an inherent problem with this model in that someone must manually update the 
database of known signatures.  Of course the benefit of the system is that it will accurately 
identify known attacks every time.  SNORT is such a system that uses this model [ids10]. 
 
Other models have included the use of rules for identifying attacks; these may focus their 
effort over several attacks or indeed classes of attacks.  Rule based systems include the Bro 
system [ids6, ids5, ids8].  They are based on set of static rules which somebody decides 
governs an attack, again these suffer from the problem of the signature-based systems, in that 
they can only detect what they inherently know about already. 
 
This project will attempt to address the problem presented by the previous two models by 
using a model of anomaly detection [ids4, ids9, ids11].  The anomaly detection model will be 
implemented using Neural Networks to analyze network traffic in real time as it passes into a 
Web Server.  The system will attempt to identify anomalous behavior on the system and take 
some appropriate action. 
 
Most Network Intrusion Detection Systems, where the network is analyzed rather than the 
host, look at low level protocols such as IP/TCP UDP and ICMP.  This project will take an 
alternative approach; as it is believed that looking at these low level protocols does not 
always give sufficient information in determining an attack.  For this reason we focus our 
attention on the application layer information in the hope that the semantic information 
available when looking at this layer will provide a clearer picture as to the nature of the 
packet.  In particular we focus our attention on the HTTP protocol, the Web Server and the 
attacks which are launched over it. 
 



________________________________________________________________________________________________________________ 
 

 
 

 
Page 10 of 184 

The objectives of the project are as follows: 
 

• Determine the requirements of an intrusion detection system. – The definition of 
the intrusion detection must be clearly defined for this project.  Characteristics of the 
system must be defined, i.e. to keep a high false negative rate, to be fault tolerant 
[ids2] etc. 

 
• Evaluate the use of artificial neural networks within the problem domain.  – The 

use of artificial neural networks specifically in attacking the problem should be 
addressed, drawing on both its advantages and disadvantages over rule-based or other 
types of systems. 

 
• Determine the most appropriate type of artificial neural network to use. – Many 

types of artificial neural networks currently exist; some may be more suitable for the 
problem than others.  A detailed understanding of a number of artificial neural 
networks should be acquired and the most appropriate applied to the task. 

 
• Develop an intrusion detection system using the techniques that are found to be 

best suited to the problem. – Implementation of a system will be attempted using the 
techniques found most appropriate. 

 
• Train and test the intrusion detection system using test data. – A suitable amount 

of training data should be acquired and used to train and test the system. 
 

• Test the system on unseen data. – A suitable amount of test data should be kept 
back in order to test the system’s ability to recognize previously unseen attacks as 
intrusive behavior.  This will test the usefulness of the approach. 
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4 Requirements Specification 

4.1 Purpose 
 
This document describes the requirements for a Neural Network based intrusion detection 
system.  The system will be installed on a perimeter firewall installation and will monitor 
network traffic as it enters an internal network thus it will be a Network Intrusion Detection 
System or NIDS.  The system will use an Artificial Neural Network to analyze the data and 
detect whether an intruder has attempted an attack.  When the system raises the alarm the 
network administrator for the network should be notified and can take applicable action if 
necessary. 
 
The system will employ an anomaly detection model [ids3, ids4] whereby the system is 
trained on normal data, so that a model of the normal usage of the server is realized within 
the weight matrix of the Neural Network.  The system should then be capable of detecting 
where parameters are outside this normal model thus detecting an intruder. 
 
The very nature of an anomaly detection model implies that it give high accurate 
identifications but will inherently suffer from high false positive identifications.  This is 
because a normal system becomes very difficult to define, without traces of every possible 
user activity on the system.  Ideally we would want the Neural Network to be capable of 
generalizing over the input allowing us to train it on only a small percentage of the overall 
search space. 
 
We may find that the level of generalization differs with varying services offered on a 
system.  The system is more likely to generalize over sites that contain only static web pages.  
More advanced pages with CGI scripts and complex database back-ends are expected to yield 
less accurate results. 
 
A perfect system would be one that could have a zero false positive and zero false negative 
rates.  However this is a difficult task when new attacks are discovered every day.  The 
system will thus focus on gaining a low false negative rate with a reasonable false positive 
identification rate. 

4.2 Scope 
The system will be targeting the HTTP protocol on a World Wide Web Server.  The System 
should therefore be capable of detecting attacks on the Web Server itself as well as other CGI 
programs installed on the system it should also be capable of detecting the exploitation of 
miss-configured web servers.  If there is enough time Denial of Service attack detection will 
also be included. 
 
The system will use three complexities of web application to test the capability of the system.  
The system will first be tested on a data only site, where CGI programs aren’t in use, the 
system should cope with this scenario the best.  The system should then be tested with a more 
complex site that has a simple form.  This should be harder to detect intrusive behavior due to 
the variation in parameters expressed in the query strings, which are not apparent in the static 
model.  Finally the system will be tested with a full-on e-commerce site with many CGI 
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programs and high database access, this scenario requires a large generalization capability of 
the system and is expected to yield the least accurate results. 

4.3 Assumptions and Dependencies 
 
The system will attempt to classify a particular HTTP request or an HTTP session on a Web 
Server as normal or anomalous.  However, if users are behind a Proxy Server, accurate 
identifications of the session user may not be possible.  Therefore for the purpose of this 
project we must assume that a session from a single IP address is the session of a single user. 
 
The HTTP protocol version 1.0 specifies that a single TCP connection will carry a single 
HTTP message [n3].  HTTP/1.1 [n2] allows multiple messages over a single connection this 
system will assume we are using the HTTP/1.0 protocol. 
 
Fragmentation provides a powerful mechanism for bypassing Intrusion Detection Systems 
[se7].  This system will assume these kinds of measures do not occur and that the received 
packet has not been fragmented.  This project will not implement re-assembly routines. 
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4.4 Use-Case Model Survey 

4.4.1 Collecting Training data 

The system will come with a tool similar to tcpdump1.  It will be told how to classify the 
session and produce a dump file and put it into some directory corresponding to the correct 
classification of the session. 
 
Actors: 
 
System Admin / Trainer 
 

System Admin

1 1

Run dump program with
classification information

fig 4.1 
 

4.4.2 Training Phase 
The system will require a training phase in order to determine the correct weights for the neural network.  This 
training phase will require training data that is marked as normal or anomalous.  This will allow the network to 
adjust its weights via the use of a supervised learning algorithm to the correct values. 
 
Actors: 
 
System Admin/Trainer 

System Admin

Start Training
Sequence

1 1

Build Training Data

«extends»

Record Weights

1

1

fig 4.1 
  

                                                 
1 See glossary for description 
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4.4.3 Starting Service 

The service will need to be started in order to begin its analysis of the network.  Someone 
with super user privileges only must carry out this task. 
 
Actors: 
 
System Admin 
 

System Admin

1 1

Start System

fig 4.3 
 

4.4.4 Updating parameters 

Parameters will undoubtedly need changing within the system while it is still running live on 
the network.  Such parameters include weight matrix of the neural network and the threshold 
value for informing the system administrator. 
 
Actors: 
 
System Admin 

System Admin

1 1

Update System
parameters

fig 4.4 

4.4.5 Stopping Service 

The service will need to be stopped for various reasons while it is being used.  Again only a 
super user may do this. 
 
 

System Admin

1 1

Stop System

fig 4.5 
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4.4.6 Normal user using web server 

During normal usage of the system, the system will be monitoring all network traffic bound 
for the Web Server that the system is protecting.  In the event of normal activity the system 
should not respond at all and normal network service is expected.  The system will keep the 
analyser for this client in memory for 3 minutes, so later identification of anomalous behavior 
is possible. 
 
Actors: 
 
Good User 

Good User

Access Web Page

* 1

Intercept Network
Traffic

1

*

Analyse Packets

* *

Analyse traffic and take no action.
Keep the analyser in memory incase the
user re-establishes the session.

 fig 4.6 

4.4.7 Attacker attempting to abuse the system 

At some point an alarm will be raised the neural network classifies an attack as anomalous.  
At this point the system admin is notified and invited to inspect the servers log files. 
 
Actors: 
 
System Admin 
Attacker 

Attacker

Access Web Page

* 1

Intercept Network
Traffic

1

*

Analyse Packets

* *

Analyse traffic and inform the
network administrator that
an attack may have occurred.

System Admin

* *

fig 4.7 
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4.5 Actor Survey 

4.5.1 The System Administrator 

The system administrator is the person who looks after the system, and is responsible 
for security on the system.  They should be capable of determining the parameters of 
their system under normal operation and be capable of identifying the signs of an 
intruder. 
 

4.5.2 Good User 

This could be anyone who is using the web server that the system is protecting.  They 
are simply browsing web pages. 

4.5.3 Attacker 

This is anyone who is trying to disrupt the services offered by the server, or is trying 
to gain access to the system illegitimately.  This can include viruses or worm 
programs such as Code Red as well as humans. 
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4.6 Requirements 

4.6.1 Functional Requirements 

 
1. The system must be able to read HTTP messages from a variety of sources.  These 

must include raw network packets, log files and TCP/IP sockets. 
 

2. The user will be able collect the necessary training data using an appropriate tool. 
 

3. The user will be able to train the neural network based analysis engine. 
 

4. The system must be able to be started and stopped by a privileged user of the system. 
 

5. The system will be capable of learning the difference between a normal HTTP 
message and an anomalous one. 

 
6. The system is required to notify a system administrator when a sequence of events 

that is likely to be an attack is encountered. 
 

7. Statistics of the systems operation must be able to be collected for analysis and 
review. 

4.6.2 Non-Functional Requirements 

 
1. The system must be easy to train for new users of the software.  The mechanism for 

training the system used must be easy to understand and allow someone with a 
reasonable background in computer networks to capture the correct data and use the 
training software to create an analysis engine for their network. 

 
2. Users of the system must be able to start and stop the system easily. 

 
3. Users of the system must be able to configure any parameters the system may use in 

an easily manageable way. 
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4.6.2.1 RELIABILITY 
 
System administrators should not be required to re-start the system at any point unless they 
wish to do so for maintenance reasons. 
 
False negative identifications of attacks should be minimized heavily.  This means a higher 
focus on detecting false negatives should be given to the project rather than trying to reduce 
false positives, although a minimized false positive rate is desirable as a secondary concern. 
 
Intrusion Detection Systems are often themselves the target for attacks [se7], so the system 
should attempt to resist subversion [ids2].  So a careful, security conscious view to the 
development is necessary. 
 

4.6.2.2 PERFORMANCE 
Packets must be captured fast enough to enable real-time analysis of the data, and a system 
administrator should be notified as soon as possible. 
 
When the service becomes slow due to heavy traffic, the system should not affect the 
performance of the rest of network [ids2]. 
 
The system should express a high degree of tolerance to internal faults and external faults 
with the system itself as well as its host system. 
 

4.6.2.3 SUPPORTABILITY 
Dynamic configuration of the system will allow the network administrators to add a different 
weight matrix to the system with minimal disruption to the service, and without disrupting 
any other services on the network. 
 

4.6.2.4 SCALABILITY 
Scalability is not really an issue in this project, however thought will be given to making this 
or future system able to scale up to larger identification tasks. 
 

4.6.3 Online User Documentation and Help System Requirements 

The systems API will be generated using the java documentation generator, javadoc.  This 
will enable other programmers to develop the system further.  In addition there will be a full 
maintenance and user manual available in html and on paper. 
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4.6.4 Design Constraints 

The Java programming language will be used to develop the system, initially for the Linux 
operating system. 
 
JPCap must be used to provide access to the libpcap c library as well as the raw sockets API.  
For JPCap to work libpcap must also be installed on the system. 

4.6.5 Component Libraries 

The JPCap library is required to implement the system.  JPCap is a Java interface to the 
UNIX library libpcap and the Windows library winpcap.  The system will be built using this 
library. 
 
The Java SDK and its libraries will be required to implement the system. 

4.6.6 Interfaces 
4.6.6.1 USER INTERFACES 

The user will be capable of connecting to the service in order to administer it.  This will 
include updating parameters, starting and stopping the service.  This can be graphical or text 
based. 
 
The user must also be capable of training the network provided they have the data sets in the 
correct place for the system to find them.  This can again be text or graphical based. 
 

4.6.6.2 SOFTWARE INTERFACES 
The system will interface with the packet capture library JPCap to enable raw packet capture 
and the raw sockets API. 
 
The system will be implemented in the Java programming language and so its standard API 
will be used. 
 

4.6.6.3 COMMUNICATIONS INTERFACES 
An Ethernet card must be installed on the machine that is running the software.  With the 
addition of JPCap the system will eavesdrop on the network in order to analyze its activity. 
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5 System Architecture 

5.1 Overview 
 
This section describes the architecture of the software system forming part of this 
investigation.  The system has been developed as a framework allowing traces of varying 
formats and varying analysis tools to be written, in order to investigate the problem 
domain.  Three sub systems have been constructed in order to logically divide the 
structure. 
 
The first is the Event Engine; this provides the system with the means to read from live 
network interfaces/log files.  The Event Engine framework will use Analysis Engine 
components to analyze the network traffic.  The Event Engine uses a JavaCC generated 
parser to parse the HTTP packets that are read from raw network interfaces. 
 
Secondly, the Analysis Engine, as previously mentioned provides a framework for the 
analysis of the data.  It provides a set of tools with which to investigate analytical 
techniques used within in this project. 
 
The final sub-system is the Main package; this contains a bunch of programs that use the 
Event Engine and the Analysis Engine to bring the system together.  It provides a live 
system, conversion and dumping tools to parse raw TCP/IP packets for information and a 
training environment for generating performance statistics.   It also contains a hand 
filtering tool used to hand filter packets into separate files. 
 
Essentially we are creating a suite of tools that will collect, decode/encode, and analyze a 
data set containing both normal data and attack data.  The suite of tools is such that we 
can configure it to read from a number of sources, encode the data in a number of ways 
and analyze the data using a variety of techniques. 
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The use of these tools flows as follows; 
 

Dump system Training system Live System

Take traffic
from live

network/dump
files and
produce

training data.

Feed trained
weight matrix

into live
system.

Statistics Report containg error rates etc. Statistics Report containg error rates etc.

fig 5.1 
 
Each of these tools will use parts from both the Event Engine and the Analysis Engine.  
Each package collaborates with the following dependencies; 
 

 fig 5.2 
 
The Analysis Engine uses some of the event engine classes in order to analyze the data in 
an implementation independent way.  The Event Engine must be aware of the analyzer 
that is used to analyze the network traffic and so this dependency also exists.  Of course 
the Main package WebIDS must be dependant on both the Analysis Engine and the Event 
Engine for its operation. 
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5.2 WebIDS.EventEngine 
 

5.2.1 Commentary 

The Event Engine package contains the functionality and logic with which to read HTTP 
requests from some source in an independent manner, constructing an appropriate 
representation for this source.  This data is then simply passed up to the Analysis Engine 
for analysis.  The Event Engine will react accordingly to the analysis of the HTTP request 
by taking appropriate action.  The action that will be taken is dependant upon the 
configuration of the system, i.e. whether log files or raw packets are being read. 
 

5.2.2 Static Structure 

fig 5.3 
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5.2.3 EvReader and implementations 

 
The EvReader interface provides the necessary interface with which to train and run the 
system in a live state. 

void addObserver(EvObserver obs)  
          allows you to register an object as an observer, so that appropriate actions can 
be taken when analysis has been conducted. 

 void build(java.lang.String fname, EvTrSet tset)  
          builds an internal representation of the resource corresponding to filename. 

 void interruptTimer(long millis)  
          allows the user to interrupt either of the two other operations. 

 void run(java.lang.String fname, AeAnalyser analyser)  
          runs the resource corresponding to filename in a live state. 

 void setThreshold(double t)  
          allows you to set the threshold for determining good and bad packets. 

 
There are several implementations of this interface in the system each of which provides 
the desired functionality whilst reading from a number of different sources. 
 
EvReaderLogFile 
 
This class is an implementation of the EvReader interface which can read HTTP requests 
from apache log files.  It builds the training set by reading the log files from disk. 
 
EvReaderJPCap 
 
This class implements the EvReader interface by using the packet capture library JPCap 
which is a JNI interface to the infamous unix packet capture library libpcap.  This reader 
is an implementation of a Packet Sniffer therefore it allows the user of this reader to read 
raw packets either Live on the network or from dump files. 
 
EvReaderSocket 
 
This class is an implementation of the EvReader interface which reads the HTTP requests 
by listening on a socket.  After valid analysis this class will forward the request onto the 
web server.  Therefore this class is acting as a Proxy Server. 
 
EvReaderText 
 
This class is an implementation of the EvReader interface which reads the HTTP requests 
from the AeAnalyser dump file format.  This is a comma delimited format. 
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5.2.4 EvTrSet 

 
The EvTrSet class contains a bunch of HTTPRequest objects.  It provides methods to 
access these objects in an iterative fashion.  It also provides the method to convert these 
objects into input vector representations. 
 

 void add(EvHTTPRequest hm)  
          adds an HTTP message to the t set. 

 void addRandom(int count)  
          generates a load of random HTTP requests. 

 EvHTTPRequest get(int i)  
            

 double[] input(int i)  
            

 int size()  
            

 EvTrSet splitSet(double prob)  
          splits this training set up into two sets. 

 double[] target(int i)  
            

 java.lang.String toString()  
          returns a string representation of the trset. 

 void truncate(int ncount)  
          truncates the input to size ncount 

 
The EvTrSet class contains extra functions to enable manipulation of the training sets, 
example of such functions are splitting the sets to implement cross validation, as well as 
truncation, that removes any stored requests past the specified count. 
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5.2.5 EvHTTPRequest 

 
The EvHTTPRequest object represents an HTTP request; it should contain all the 
information available to the original source.  If the request was built from a raw packet, 
then it should contain every part of the HTTP header as well as a destination/source IP 
address etc.  The EvReader objects build these objects from their own data files.  They 
can be added to EvTrSet’s in order to be used in analysis training or simply analyzed 
individually. 
 

java.lang.String getMethod()  
            

 java.lang.String getURI()  
          returns the uri string for this request. 

 java.lang.String getVersion()  
            

 double[] inputVector()  
          This method constructs an input vector suitable for analysis by 
the analysis engine. 

 boolean isAttack()  
          returns whether this packet is flagged as being an attack. 

 java.lang.String key()  
            

 void setAttack(boolean fl)  
          sets whether the packet is an attack or not. 

 void setMethod(java.lang.String m)  
          allows a user of this class to set the method 

 void setURI(java.lang.String uri)  
          allows a user of this class to set the requesturi variable. 

 void setVersion(java.lang.String vs)  
          allows a user of this class to set the version variable 

 java.lang.String toString()  
          Turns this object into a string representation will be used when 
dumping logs to disk etc. 

 

5.2.6 ParseHTTP JavaCC grammar 

 
This is not a java file, but a javacc file.  It contains a grammar that is compliant with the 
HTTP/1.1 RFC [n3]. 
 
This was a direct translation from the B.N.F. specified in the RFC.  EvReader objects use this 
parser to parse their HTTP requests and build EvHTTPRequest objects.  The parser 
constructs the packet retaining information such as the URL string, the request method, and 
the header information. 
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5.3 WebIDS.AnalysisEngine 
 

5.3.1 Commentary 

 
The Analysis Engine contains the logic for the analysis of the data provided by the Event 
Engine.  The Analysis Engine consists of an interface AeAnalyser, this interface is 
implemented by five classes which perform some analysis of the data in order to classify the 
HTTP request objects as attacks or not. 
 
The Event Engine is provided with the result of the analysis and is prompted to take 
appropriate action depending on the result of the analysis.  The Analysis Engine is designed 
upon the assumption that the AeAnalyser classes will require training, thus some form of 
training algorithm must be implemented. 
 

5.3.2 Static Structure 

 

+analyse(in req : EvHTTPRequest) : double
+getName() : String
+getStats(in trset : EvTrSet, in thresh : double) : AeStats
+load(in filename : String)
+save(in fname : String)
+train(in trset : EvTrSet) : double

AnalysisEngine::AeAnalyser

+analyse(in req : EvHTTPRequest) : double
+getName() : String
+getStats(in trset : AeStats, in thresh : double) : AeStats
+load(in fname : String)
+save(in fname : String)
+train(in trset : EvTrSet) : double

AnalysisEngine::AeAnalyserDump

+analyse(in req : EvHTTPRequest) : double
+getName() : String
+getStats(in trset : AeStats, in thresh : double) : AeStats
+load(in fname : String)
+save(in fname : String)
+train(in trset : EvTrSet) : double

-m_inputlayer : double[]
-m_hiddenlayer : double[]
-m_outputlayer : double[]
-mw_in2hidden : double[]
-mw_hidden2out : double[][]
-m_trainer : AeMLPTrainer

AnalysisEngine::AeAnalyserMLP

+analyse(in req : EvHTTPRequest) : double
+getName() : String
+getStats(in trset : AeStats, in thresh : double) : AeStats
+load(in fname : String)
+save(in fname : String)
+train(in trset : EvTrSet) : double

-m_inputs : double[]
-m_outputs : double[]
-m_weights_in_out : double[][]

AnalysisEngine::AeAnalyserPCA

+analyse(in req : EvHTTPRequest) : double
+getName() : String
+getStats(in trset : AeStats, in thresh : double) : AeStats
+load(in fname : String)
+save(in fname : String)
+train(in trset : EvTrSet) : double

AnalysisEngine::AeAnalyerElman

AeAnalyser

AeAnalyser

AeAnalyser

AeAnalyser

-m_weights : double[][]
-m_fitness : double
-m_recomb : double
-m_mutrate : double
-m_eta : double

AnalysisEngine::AeWeightMatrix

+addRequest(in req : EvHTTPRequest)
+determineClass() : bool

-reqs : (EvHTTPRequest, double)[]
AnalysisEngine::AeQueue

EventEngine

+getCorrectness() : double
+getError() : double
+getFNRate() : double
+getFPRate() : double
+toCSV() : String
+toString() : String

AnalysisEngine::AeStats

1

*

1

*

1

*

+load(in fname : String)
+save(in fname : String)
+trainme(in net : AeAnalyserMLP, in trset : EvTrSet)

«interface»
AnalysisEngine::AeMLPTrainer

+load(in fname : String)
+save(in fname : String)
+trainme(in net : AeAnalyserMLP, in trset : EvTrSet)

AnalysisEngine::AeMLPTrainerBP

+load(in fname : String)
+save(in fname : String)
+trainme(in net : AeAnalyserMLP, in trset : EvTrSet)

AnalysisEngine::AeMLPTrainerGA

AeMLPTrainer AeMLPTrainer

+analyse(in req : EvHTTPRequest) : double
+getName() : String
+getStats(in trset : AeStats, in thresh : double) : AeStats
+load(in fname : String)
+save(in fname : String)
+train(in trset : EvTrSet) : double

AnalysisEngine::AeAnalyserGroupOcc

AeAnalyser

11

«uses»

 
fig 5.4 
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5.3.3 AeAnalyser interface and implementations 

 
The AeAnalyser interface provides the Analysis Engine framework with an independent way 
for several data analysis techniques to be used by the Event Engine.  AeAnalyser objects may 
be registered with an EvReader, when a reader needs to analyze some data it will used its 
registered object. 
 

 double analyse(EvHTTPRequest httpreq)  
          perform some analysis of this httpreq object. 

 java.lang.String getName()  
            

 AeStats getStats(EvTrSet trset, double threshold)  
            

 void load(java.lang.String file)  
          loads analysers internal structure from disk. 

 void save(java.lang.String file)  
          saves analysers internal structure to disk. 

 double train(EvTrSet trset)  
          train this analyser with this data. 

 
 
There are five implementations of this interface used in this investigation; 
 
AeAnalyserDump 
 
This is an implementation of the AeAnalyser interface.  It is simply designed to convert an 
EvHTTPRequest object into a text representation in a custom log format for inspection later, 
or simply for converting the data into a format that can be used at a later date. 
 
AeAnalyserPCA 
 
This class is an implementation of AeAnalyser which implements Principle Component 
Analysis (Section 6.3).  It logs the results of the PCA and then performs the K-Nearest 
neighbors returning the class with the largest match.  The PCA is implemented as an 
unsupervised Neural Network using the Oja’s rule [nn3]. 
 
AeAnalyserMLP 
 
This class is an implementation of AeAnalyser which implements a Multi-Layer Perceptron 
Neural Network [nn3, nn0, nn4] (section 6.2).  This Neural Network may be trained with a 
number of algorithms and so contains an implementation of the interface AeMLPTrainer, 
namely a back-propagation type algorithm and a Genetic Algorithm. 
 
AeAnalyserGroupOcc 
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This class implements the AeAnalyser interface with a simple analysis of the frequencies of 
groups of letters within the URL string, i.e. the number of vowels or locator characters. 
 
AeAnalyserElman 
 
AeAnalyserElman is an implementation of the AeAnalyser which uses an Elman network 
[nn1] (section 6.4.2).  An Elman network is very similar to a MLP network except it has 
minimal recurrent links.  Therefore allowing it to find structure in time over all the requests it 
has seen before. 
 
Due to its similarity to MLP networks, the same Back Propagation and Genetic Algorithms 
can be used to train it.  The Back Propagation on an Elman network is called Back 
Propagation through time [nn2].  
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5.3.4 AeAnalyserMLPTrainer and implementations 

 
AeMLPTrainer is an implementation of the design pattern Command [r1].  The trainme() 
method in the interface passes in the training set as well as the network to be trained.  It also 
contains methods for loading and saving internal state if the training algorithm has any. 
 
The an AeMLPTrainer implementation may be registered with an AeAnalyserMLP class and 
when the train() method is called the trainme() method of the registered AeMLPTrainer 
object is called. 
 
void load(java.lang.String str)  

          allows the user to load any internal state. 
 void save(java.lang.String str)  

          allows the user to save any internal state. 
 void trainme(AeAnalyserMLP net, EvTrSet trset)  

          given a neural net, will perform some kind of training function 
 
There are currently two implementations of this interface; 
 
AeMLPTrainerBP 
 
This class implements the Back Propagation algorithm with a momentum term (section 6.6). 
 
AeMLPTrainerGA 
 
This class implements a two individual tournament selection Genetic Algorithm (section 6.6). 
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5.3.5 AeStats 

 
This object provides the users of this package with some statistics information in order to 
determine the performance of the system.  It contains information such as number of requests 
gone through and how many have been misclassified as well as rates for false positive and 
false negative identifications for later analysis. 
 

 double getCorrectness()  
           returns the correctness rate of the run being analyzed.  For 
example a perfect system would be 100%.  If it failed on every 
identification it would be 0% correct. 

 double getError()  
           returns the error normally as the sum of squares (section 6.6). 

 double getFNRate()  
           returns the percentage of false negative identifications. 

 double getFPRate()  
           returns the percentage of false positive identifications. 

 java.lang.String toCSV(java.lang.String label)  
           converts the stats into a CSV format with a label. 

 java.lang.String toString()  
            

 
 

5.3.6 AeQueue 

 
AeQueue is an implementation of a priority queue, however if there is not enough space the 
ones at the bottom are dropped.  It used to determine the k-nearest neighbors (section 6.7).  
The identification which is most prominent within the queue is chosen as the correct 
identification for a new request.  The score which a request is added with represents the 
Euclidean distance between the request we are attempting to classify and another request in 
the system already. 
 

 void addRequest(EvHTTPRequest hr, double score)  
            

 boolean determineClass()  
          From the requests in the queue which class is in the majority. 
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5.4 WebIDS main package 
 

5.4.1 Commentary 

 
The Main WebIDS package is the responsible for providing the interface and interaction to 
the human user of the system, namely the system administrator.  A suite of tools is provided 
for training, tuning and experimenting with different settings as well as producing statistics 
for analysis with other appropriate tools, of course the suite also comprises of a live system in 
order to deploy the system in a production environment. 
 

5.4.2 Static Structure 

 

fig 5.5 
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5.4.3 WiComponentFactory 

 
This class is an instance of the Factory design pattern [r1].  It reads from configuration files 
and allows the rest of the system to be built in an implementation independent way.  It is also 
an instance of the Singleton design pattern [r1]. 
 
static WiComponentFactory instance()  

            
 AeAnalyser makeAnalyser()  

          makes an AeAnalyser object. 
 EvReader makeReader()  

          makes a EvReader object 
 
The methods makeAnalyser builds an AeAnalyser object according to the implementation 
which it is currently configured to use.  The makeReader method also builds an EvReader 
according to the currently configuration settings. 

5.4.4 WiUtils 

 
This class provides a set of utilities for the entire system to use. 
java.lang.Object arrayGrow(java.lang.Object a)  

          makes an array double in size, keeping the class type etc. 
 int countGroupOcc(java.lang.String xx, char[] group)  

            
 double[] frequencyAnalysis(java.lang.String str)  

          analyses a string looking at frequency of characters. 
 void infect(double[][] infector, double[][] infectee, 

double recomb, double mutationrate, double eta)  
          infects one matrix with another. 

 void initWeights(double[][] wts)  
          randomly initialises weights in a matrix 

 java.lang.String inputVectorToString(double[] ipvec)  
          Simply prints out a double array representing an input vector. 

static WiUtils instance()  
           returns the single instance of this class. 

 int[] randomArray(int max, int all)  
           returns an array of max numbers picking from between 0 and 
all.  The array will contain no duplicates. 

 java.lang.String randomString()  
          returns a random array corresponding to a random string. 

 double sigmoid(double x) implementation of the sigmoidal function 1/e(-x). 
            

 double[] urlToIV(java.lang.String uri)  
          given a url string converts it into a binary representation of a url 
string. 
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5.4.5 WiLogFile 

 
This class represents a log file on the disk.  When the constructor is called the filename of the 
log file is stored.  Sub-sequent writes and reads from the object refer to the file specified in 
the constructor. 
 

 
WiLogFile(java.lang.String fn)  
          constructs a LogFile associated with a particular file. 

 java.util.ArrayList readLog()  
          reads the contents of the log into an ArrayList. 

 void writeLog(java.lang.String message)  
          writes a string to the log file. 

 

5.4.6 WiOpenLive 

 
This class provides a main method for the system to be opened in a live state.  If we were 
using the JPCap reader that would mean opening up the Ethernet card in promiscuous mode, 
if it were a Proxy Server it would mean opening up the TCP/IP server.  The 
WiComponentFactory is used to create the EvReader objects and AeAnalyser objects. 

 void buildFromDir(java.io.File dir)  
          runs the m_reader to build the trset. 

static void main(java.lang.String[] args)  
          opens the interface live. 

 void openLive(java.lang.String fname)  
          opens the read live, with the file/dev given int he params.. 

 void runSet(java.lang.String dir)  
          runs the reader on a directory.. 

 

5.4.7 WiTrainEnv 

 
This class is the environment for training the AeAnalyser that is currently registered as the 
default analyzer.  It will build the training sets from the command line arguments, build the 
training sets and call the train() method for the analyzer. 

 void buildFromDir(java.io.File dir, EvTrSet trset)  
          runs the m_reader to build the trset. 

 EvTrSet buildSet(java.lang.String dir)  
          builds a training set given a directory, reads up all the files in the 
directory and parses them for dumps. 

static void main(java.lang.String[] args)  
          main method runs the trainer.. 

 void train(java.lang.String dir)  
          trains the Analyser 
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5.5 Collaborations 
 
The main system will run in essentially two modes.  The first is used to generate an 
appropriate weight matrix for the Analysis Engine namely a Neural Network.  The second 
phase is to open up the system in a live state.  Because the trace data and indeed the live 
system will analyze data from a number of sources, it is necessary to implement the 
EvReader interface a number of times in order to accommodate for the variety of data sources 
being used.  Equally the AeAnalyser interface will be implemented a number of times in 
order to experiment with a number of different analysis techniques. 
 
Because of the abstract nature of the systems framework these collaborations deal with the 
interfaces used.  All implementations will fit into this general framework. 
 

5.5.1 The live system framework Sequence Diagram 

 
 

 fig 5.6 
 
Fig 5.6 shows the interaction between the main objects and interfaces within when the live 
system is started.  The Component factory builds both the AeAnalyser and EvReader classes 
and provides the WiOpenLive class with a set of methods for opening a user specified 
interface. 
 
Of course the actual implementations of the EvReader and AeAnalyser classes are not shown 
here due to their complexity.  This diagram shows how the framework interacts, see the 
Underlying Principles section (6) for the algorithms used within the framework.
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5.5.2 The training system sequence diagram 

 

  fig 5.7 
 
 
 
The training system is similar to the live system interaction except the WiTrainEnv retains 
control after the EvReader object has read the necessary trace data.  Notice also that the 
EvReader is no longer used after this point.  The training can then begin by repeatedly calling 
train on the AeAnalyser object. 
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5.5.3 The Multi-Layer Perceptron training algorithm framework  

 
This is an implementation of the template design pattern.  Which ever trainer is currently 
registered with the AeAnalyserMLP object is called via its trainme() method.
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6 Underlying Principles 

6.1 Motivation for Analysis Framework 

6.1.1 Motivation for looking at Application Layer 

 
Automatic identification of intrusive and malicious behavior on computer networks is 
becoming an increasingly difficult task.  Most existing systems use information available at 
the lower level layers of the TCP/IP protocol suite such as IP, TCP/ICMP/UDP.  This of 
course gives these systems a great deal of power in identifying attacks on networks; IP 
spoofing [ids8] TCP flooding and other similar attacks on the network and transport layers 
may only be detected by inspecting this level of the protocol stack. 
 
However when we take a look at attacks which occur at the application level we find there 
may not be enough information available at the lower levels.  TCP segments may look 
completely normal whilst containing malicious code.  This motivates the investigation of a 
specific application in attempt to determine whether the semantic information available at the 
application layer will give us more insight into the identification of the attack.  For this 
project the HTTP protocol will be used to investigate the implications of the approach. 
 
Previously we mentioned the use of the Anomaly detection model [ids4, ids9, ids11].  This 
model fits quite well when we use this approach to the analysis of the data.  The normal 
usage of the system can be modeled, by applying some statistical modeling technique and 
breaches to this “normal” may be detected by determining whether the new data fits within 
normal parameters. 
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6.1.2 A closer look at the HTTP protocol 

 
HTTP (Hyper Text Transfer Protocol) is now the most popular Internet service [n2].  The 
increasing use of the Web has however encouraged its abuse.  An increasing number of 
exploits for the Web Server and its associated programs are being discovered every day. 
 
We as system administrators can determine attempts to compromise our system normally by 
simply inspecting our log files.  It becomes very clear when we look at our “normal” traffic 
that a particular request is not part of a normal user’s activity.  Log files normally contain 
information such as the request method, the URL and the response the web server gave. 
 
If we take a look at some log entries for some normal web sites the point above is made clear; 
 
Buildersdirect.co.uk 
 
212.241.139.4 GET /default.asp?qtbid=5&qtcid=QL&qtqecid=49 200 
212.241.139.4 GET /Brands/BuildersDirect/scripts/GenralUtility.js 200 
212.241.139.4 GET /QuoterEngine/inc/stdlib.js 200 
212.241.139.4 GET /QuoterEngine/inc/validate3.js 200 
212.241.139.4 GET /default.asp?qtbid=5&qtcid=QL&qtqecid=49 200 
192.168.0.22  POST /default.asp?qtbid=5&qtcid=QL&qtqecid=29 200 
 
Fkellis.com 
 
212.241.139.4 GET /fkellis/logo.gif 200 
212.241.139.4 GET /fkellis/index.html 200 
212.241.139.4 GET /fkellis/tap.jpg 200 
212.241.139.4 GET /fkellis/about.html 200 
 

These are a few requests made from the buildersdirect.co.uk and fkellis.com web servers 
respectively.  Let’s look at the information which logs like this give us; 
 
Firstly they give us the IP address that the request came from; this is useful because we may 
be able to tell where the request came from.  Of course there are many ways to hide the origin 
of the attack, by spoofing the IP Address [ids4] or going through a proxy, or simply using a 
different machine from your own.  Clues can be discovered from the IP Address; the Code 
Red worm tends to attack hosts with very similar IP Addresses to the originating hosts, this 
could give a clue as to the intent of the request.  This avenue of investigation seems less 
important in determining the presence of intrusive behavior as it tells us only the origin of the 
attack. 
 
Secondly let us look into the request type.  Of course this is very important, are we using 
GET, POST HEAD etc.  This is an important piece of information to look at.  However it 
complicates the investigation somewhat and therefore the investigation will be restricted to 
GET request types, most CGI attacks use GET anyway. 
 
Thirdly the URL is given; this gives us a very large amount of information.  It tells us the 
resource that the request is asking for as well as any parameters that may be passed to the 
resource identified by the URL.  This gives an attacker access to a particular resource which 
may use some code which is exploitable.  We find that most attacks will use a carefully 
crafted URL string in order to exploit security holes in the resource; 
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Directory traversal attacks of various kinds are exploitable when a system does not apply the 
correct permissions of the directory where their scripts are run.  This allows an attacker to 
traverse the directory structure, and execute commands of their choice.  Attackers will use 
these kinds of attacks in order to execute general purpose interpreters such as cmd.exe, bash, 
csh, ksh etc; As well as to grab password files for cracking later. 
 
 Examples of this are below; 
 
GET /cgi-bin/PRN/../../../../../../../../WINNT/system32/ipconfig.exe HTTP/1.0 
GET /sojourn.cgi?cat=../../../../../etc/password%00 HTTP/1.0 
GET /a1stats/a1disp3.cgi?/../../../../../../etc/passwd HTTP/1.0 
 

There are many variations on this kind of attack including replacing the / with the Unicode 
equivalent, as the infamously insecure web server IIS implements a poor scanning facility for 
this kind of attack.  The Nimbda worm exploits many of these vulnerabilities; 
 
GET /scripts/..%c1%1c../winnt/system32/cmd.exe?/c+dir HTTP/1.0 
GET /_vti_bin/..%255c../..%255c../..%255c../winnt/system32/cmd.exe?/c+dir HTTP/1.0 
GET  /..%25%35%63../scripts/cmd.exe?/c+dir HTTP/1.0 

 
Other attacks include buffer overflow attacks $x, where an attacker attempts to write arbitrary 
code into the memory of some program, causing a stack/heap smash resulting in the 
execution of arbitrary code.  These kinds of attack are very obvious when we see them in a 
log; 
 
GET /default.ida?XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX%25u9090%25u6858%25ucbd3%25u7801%25u9090%25u6858%25uc
bd3%25u7801%25u9090%25u6858%25ucbd3%25u7801%25u9090%25u9090%25u8190%25u00c3%25u0003
%25u8b00%25u531b%25u53ff%25u0078%25u0000%25u00=a HTTP/1.0 

 
We can instantly see by looking at the code red worm a few oddities that indicate its 
malicious nature.  The first and obvious thing to notice is the large number of X characters; 
these are used to locate correct memory location to dump the rest of the code into the 
exploited programs memory space.  We also notice a largely abnormal number of Unicode 
and hexadecimal characters which we don’t tend to see in the normal traffic.  This is the 
buffer overflow egg and contains machine instructions which will be executed if the exploit is 
successful. 
 
Other suspicious URL strings contain commands such as the UNIX “cat”, various redirects 
and pipe characters (> |), such as this URL, this will return the contents of the password file; 
 
GET /cgi-bin/simple/view_page?mv_arg=|cat%20/etc/passwd| HTTP/1.1 
 
The final piece of information that the logs give us is the response code.  The response code 
expresses how the Web server dealt with the request.  It is useful to know if people have been 
searching about for files that don’t exist; or have successfully obtained files, so the response 
code is useful for auditing after the attack has happened.  However in the context of an early 
warning system the response code is not known unless the system stores some state.  This 
makes the implementation over complicated and demands the passing of packets before 
deciding whether they contain attacks or not. 
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6.1.3 Developing the URL scanner 

 
Now we have established the great significance of the URL string in the identification of 
abnormal activity on the Web Server it becomes clear that we need some way to 
automatically scan the URL for abnormal or malicious intent.  The first thing that comes to 
mind is the equality matching or some kind of more advanced pattern matching routine for 
identifying known exploits.  This kind of thing is fine and there is no reason why it should 
not work; it in fact implements the misuse detection model [ids1, ids4]. 
 
One problem with this model is the maintenance of the signatures database.  Of course new 
vulnerabilities are discovered every day and the list will become larger and larger.  This 
increase in size will also bring about a decrease in speed as more patterns will need to be 
checked. 
 
This could potentially be solved by using some kind of complex function which can check 
the URL string against a variety of patterns in one pass.  Artificial Neural Networks provide a 
solution.  The issue of database maintenance can be solved trivially by implementing the 
anomaly detection model [ids4, ids9, ids11] and defining the systems’ normal URL strings 
and allowing the system to determine deviations from this normal. 
 
The final problem to solve now is how to encode these strings into the Neural Network.  The 
discussion in section 6.2 outlined a few types of attack against a system.  It was outlined how, 
by eye, we can tell which URL string is malicious and which is not.  So what do we see in the 
attacks that we don’t see in the normal URL strings? 
 
It is proposed that the indication of normal data is through its substrings.  One websites’ set 
of URLs seem to contain very similar sub strings within them.  This leads on to the actual 
frequency of each character occurring in the string. 
 
One way to encode this would be to use zip encoding [$x].  This, however, would require 
either a very large set of inputs or a lot of preprocessing on the data before it entered the 
Neural Network.  An alternative would be to encode the URL string as simply the normalized 
frequencies of the characters within it.  For example; 
 
The string /index.html would look like this (omitting the characters that have zero values); 
 

fig 6.1 
 
The string for the code red worm looks like this again omitting zero valued characters; 
 
/default.ida?XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXX%25u9090%25u6858%25ucbd3%25u7801%25u9090%25u6858%25ucbd3%25u7801%25u909
0%25u6858%25ucbd3%25u7801%25u9090%25u9090%25u8190%25u00c3%25u0003%25u8b00%25u531b%2
5u53ff%25u0078%25u0000%25u00=a 
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 fig 6.2 
 
 
This encoding is accompanied with a binary encoding of the length of the string so for 
example /index.html would also include in the encoding 00001010 on the end.  A Neural 
Network should be capable of using this information to build a statistical model of the system 
using the provided information.  This is the encoding and structure that will be used for the 
rest of the investigation as it seems like a good representation of the data and hopefully will 
provide us with high dispersion in the data sets that are used. 
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6.2 Multi Layer Perceptron (MLP) trained with Back Propagation 
and Genetic Algorithms 

 

6.2.1 What is a MLP? 

 
The Perceptron is a single unit pattern recognition machine invented in the 50’s by 
Rosenblatt.  He derived an algorithm for finding appropriate weights in a finite amount of 
time such that any linearly separable pattern could be recognized [nn3].  The Multi-Layer 
Perceptron (MLP) extends the original Perceptron by including a hidden layer of processing 
units.  The first layer of units feed into the second layer and second into the third layer of 
processing elements.  This new structure is capable of solving a problem which is non-
linearly separable [nn0, nn4, nn3].  The XOR problem is an example of a non-linearly 
separable problem, the space cannot be divided by a single hyper-plane (line in two 
dimensions), but requires a number of hyper-planes (see glossary). 
 
A typical MLP network is shown fig 6.3, a bias is attached to layer which is set to 1.  This 
controls the point at which the sigmoid function is activated and its weight can be trained 
along with the standard training procedure. 
 

 fig 6.3 
 
The output of a three layer network with d input units, m hidden units and c output units with 
a bias node on the first and second layers can be expressed as; 
 

 d 

aj = g(∑ ּשji(1) xi + ּשj0(1) ) (eq 1). 

i=1 
 
Where aj is the input to the hidden unit j, ּשji is the weight between the ith input unit and jth 
hidden unit, and xi is the input from the ith input unit.  The extra term ּשj0(1) is the bias node 
and is always clamped as x0 = 1 [nn0]. 
 
The function g is a sigmoid function which is normally expressed as; 
 
y =  1/ (1-e-x) (eq 2). 
 
The output from the network can be similarly expressed as; 

d 

ak = g(∑ ּשkj(2) xi + ּשk0(2)) (eq 3). 

j=1 
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Where ּשkj(2) expresses the weight between the jth hidden node and the kth output node, ak 
represents the input to the kth output unit.  Again the function g is normally the sigmoid 
function expressed in eq 2. 
 
These equations are implemented in the AeAnalyserMLP class and provide an 
implementation of AeAnalyser such that the analysis of the EvHTTPRequest objects may be 
conducted using this technique. 
 

6.2.2 Training Algorithms for MLP Networks 

 
The main function of a these types of Neural Network is the algorithms available for finding 
an appropriate weight matrix which will solve the problem you are wanting to solve.  This 
means the inevitable use of an algorithm for realizing the weights of the network.  In this 
project two such algorithms are considered.  The first is a tournament selection based Genetic 
Algorithm, the second based on the original Back Propagation with a momentum term added 
[nn3, nn0].  Momentum helps resolve the problem of becoming stuck in local minima and 
provides smoothing of the weight space [nn0]. 
 
The Genetic Algorithm is a very simple two member tournament based selection algorithm 
with creep mutation [nn5].  It is specified below; 
 
Algorithm runAlgorithm(TrainingSet ts) 
Begin 
 Candidate1 = random member of population 
 Candidate2 = random member of population 
  
 If (candidate1.fitness>candidate2.fitness) then 

candidate1 ↔ candidate2 
 
 foreach w ∈ candidate1.weights 
  if (probability of recombination) 
   candidate2.weights[w]  candidate2.weights[w] 
  if (probability of mutation) 
   candidate2.weights[w]  candidate2.weights[w] 
 end 
  
 candidate2.fitness  fitness(candidate2) 
end 
 
Algorithm fitness(member) 
Begin 
 Sum = 0 
 Foreach t ∈ ts 
  Networkweights  member.weights 
  Fire(ts.getInputs(t)) 
  Sum+=Calculate error2 
 end 
end 

          fig 6.4 
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The Back Propagation algorithm is specified as follows; 
 
 

 
Both algorithms have the same theoretical running time of O(n) [nn5].  Both algorithms have 
other similar credentials; both algorithms are valid training algorithms for MLP networks.  In 
general the Back Propagation algorithm tends to be more reliable at finding a similar 
accuracy in each run of the algorithm. 
 
These algorithms will be implemented within the AeMLPTrainer interface allowing them to 
“plugged” into the framework of the system and allowing their performance to be compared. 
 

Algorithm runAlgorithm(TrainingSet ts) 
Begin 
 Foreach t ∈ ts 

Fires(ts.getInputs(t)) 
Foreach oNode ∈ outputlayer   

   Error  target(t) – output(t) 
   Calculate Delta for o 
   Foreach hNode ∈ hiddenlayer 
    CalculateWeightDeltas 
    AdjustWeights 

end 
  end 
 

Foreach hNode ∈ hiddenlayer   
   error  0.0; 
   Foreach oNode ∈ outputlayer 
    Error = delta for o * wts_h_o[h][o] 

end 
 
   Foreach iNode ∈ inputlayer 
    CalculateWeightDeltas 
    AdjustWeights 

end 
  end 
 
 end 
end 

           fig 6.5 
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6.2.3 Application of MLP’s to the problem domain 

 
The system will incorporate the anomaly detection model [ids4, ids11].  This model specifies 
that the system be “taught” in some way that a bunch of inputs is normal.  Variations from 
this normal model can then be detected using an appropriate technique.  Of course MLP 
Neural Networks are capable of learning any function, and so could potentially learn the 
pattern which warrants “normal” data. 
 
The system that will be used for training the network is specified below; 
 

 

Algorithm anomalyDetectionTraining() 
Begin 
 
 TrSet set1 = getTrainingSet() 
 TrSet set2 = set1.split() // this will break the training set into two equal parts.
 
 NeuralNet n; 
 
 For i=0 to epochs 
  n.train(set1) 
   
  n.testQuality(set1) 
  n.testQuality(set2) 
 Next 
End 
 
(part of MLP implementation class) 
 
Algorithm testQuality(TrSet) 
Begin 
 Foreach t ∈ set1 
  output fire(t) 
   
  // Error is implemented as sum of the squared  

// error of the outputs against the normal  
// target. 
if (Error(output) > 0.5)  

   raiseAlarm() 
Next 

End 

fig 6.6
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6.3 Principle Component Analysis Networks 

6.3.1 General discussion of PCA 

 
Principle Component Analysis is a well known statistical technique [nn3].  It is the process of 
taking some high dimensional input data and projecting it onto a lower dimensional space 
whilst maximally preserving the information about the original input data.  It is a type of 
feature extraction [nn0] where we reduce the complexity of the input data to gain increased 
speed and generalization capabilities of the Neural Network. 
 
There is however other reasons for applying PCA to data excluding feature extraction.  This 
may include actually analyzing the vector which represents the Principle component, it can 
tell us a lot about the data.  The first Principle Component provides us with the vector which 
gives maximum variance in the data.  Of course sub-sequent Principle Components are the 
vectors where the data is projected ortho-normal to the previous components which give 
maximum variance in the new projected space. 
 
Implementations of PCA may use matrix equations [nn0].  However there are alternative 
ways to perform PCA, one such way is to use an unsupervised Neural Network [nn3].  This 
project will investigate the use of Principle Components on the data in order to learn more 
about the data in the chosen encoding. 
 
 

6.3.2 Associative Memories and Oja’s rule and Sangers rule 

 
Associative memories work by strengthening a connection each time it is used.  This results 
in the weights which are used more often to become stronger.  In the context of an Artificial 
Neural Network, we can see that patterns the Network has seen previously are more likely to 
give a higher response then a pattern that has not been seen before. 
 
Of course several things need to be taken into account when using such a technique, as if we 
simply continue to increase the weights they will become very large.  Many people have 
developed algorithms for the normalisation of these kinds of Networks namely Oja [1982].   
 
wi(n+1) =  wi(n) + ŋy(n) xi(n)____ 

√(∑(wi(n) + ŋy(n)xi(n))2) (eq 6.1) 
 
This equation will allow a bunch of weights to be updated so that the inputs seen most often 
will allow the Processing unit to be given a higher value.  Using this type of Neural Network 
we are able to implement PCA.  The equation in 6.1 finds the maximum variance among the 
input data.  This is of course the first Principle component.  Using a slightly modified version 
of this equation we are able to apply the deflation method [nn3].  This will project the data 
onto an axis perpendicular to the first eigenvector, allowing us to apply the algorithm again to 
find the next Principle component.  This may be applied as many times as the number of 
dimensions you wish to map the data to. 
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fig 6.7 
 
 
Fig 6.1 shows a PCA network which will map the input vector X onto the output vector Y.  Y 
will correspond to the first n Principle components.  To achieve this mapping the following 
update rule is applied (Sangers rule); 
 
     i 
∆wij(n) = ŋyi(n) [xj - ∑wkj(n)yk(n)] 
   k=1  (eq 6.2) 
 
wij(n) = wij(n) + ∆wij(n) (eq 6.3) 
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6.3.3 K-Nearest Neighbours algorithm 

 
This is a very naïve algorithm designed to find the most likely classification of a new point in 
the M-dimensional space.  Using the Euclidean distance between the new point and the K-
Nearest points around it, the classification is made based upon the class which a majority of 
the neighbours belong to. 
 
The algorithm goes as follows; 
 

 
The Euclidean distance is calculated via the following equation; 
 
 i=length(n and t) 
Ei = √(∑(ti – ni)2) 
 i=0 
 
Where ti and ni is the value of an axis in the M dimensional space, where t is the set of 
training points and n is the new point. 
 

6.3.4 Application of PCA Networks to the problem domain 

 
PCA networks and indeed PCA in general is a very good technique for finding the parts of 
the input data which are most useful.  The data sets that we are looking at in this project may 
have defining feature which accounts most of the variance in the data.  This would allow us 
to classify the data according the score which is given at each Principle component. 
 
The frequency of characters in the URL strings is quite likely to occur in groups, such as 
vowels or number characters.  If this is the case it may be possible to simply extract the 
necessary character groups from the Principle component weights and decide the 
classification of the URL string using these criteria. 
 
Another use of this technique is simply to use it for feature extraction. It may be the case that 
an unsupervised layer before an MLP or similar network may give better classification of the 
data.  PCA should map the original 266 dimensional input space of character frequencies 
onto 10 Principle components representing maximum dispersion in the data. 
 

algorithm K-NearestNeigbours(HTTPRequest new) 
 
Let Q be a priority queue which holds K HTTP requests 
 
For each trainer є HTTPRequest in training set do 
 Value  Euclidean distance (new, trainer) 
 Q.add(new, value) 
End for 
 
Return the most prominent classification in Q. 
 

Fig 6.3.1
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6.4 Recurrent Neural Networks 

6.4.1 Discussion of Recurrent Neural Networks 

 
Recurrent Neural Networks are Neural Network architectures which contain links both 
forward through the Network and backward.  These architectures are therefore capable of 
storing some sort of memory.  Of course there is much Neural Network architecture capable 
of representing memory in this way.  The most common of these are set architectures, which 
are based on feed forward architectures and contain very precise recurrent links namely 
William Zipster [nn2] and Elman Networks [nn2, nn1].  Many people have also experimented 
with evolving the network architecture from scratch, although this technique gives results 
which are difficult to interpret. 
 
Recurrent Neural Nets of the Elman and Zipster variety are good at tasks such as time series 
prediction and signal processing [nn2].  The memory which Recurrent Neural Networks are 
capable of storing is an important aspect in time series prediction.  It allows us to find 
patterns which exist not just in this time instance but throughout time, in essence “unfolding” 
time.  Allowing the Network to predict and classify structures in time [nn1]. 
 

6.4.2 Elman Networks 

 
Jeffrey Elman (1990) proposed a simple recurrent Neural Net architecture which he named 
the Elman network its architecture is as follows; 
 

 
 
The vector X represents the input vector, H the hidden layer and O the output layer.  The 
design is very similar to an MLP except it contains an extra recurrent layer which is called 
the context layer and is represented by the vector C.  Every time the network is activated the 
internal values at the hidden layer are copied up to the context layer.  The context layer feeds 
forward in the same way as the input vector.   
 
This allows the network to store its internal state at t-1 time steps, where t is the number of 
time steps, thus allowing the Network a limited amount of memory. 
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The weights which connect the context layer to the hidden layer can now be trained with 
techniques found for MLP Networks, namely Back Propagation.  The Elman network trained 
with Back Propagation is aptly named “Back Propagation through time”; it is capable of 
finding patterns in time [nn1]. 
 

6.4.3 Application of Recurrent Networks to the problem domain 

 
Of course most attackers will go through a sequence of steps whilst attempting to 
compromise a host.  These may be performing scans of the host system for known 
vulnerabilities followed by an attempted exploit.  These patterns an attacker goes through 
may be found to differ from say a normal user who continually clicks on links to legitimately 
navigate through a web site. 
 
However the use of these kinds of networks becomes rather complex when we start looking 
at the implementation of them in an Intrusion Detection System.  If we are looking at every 
HTTP request going through to the web server regardless of who is making the request, the 
patterns may be very difficult for any kind of system to spot.  The other approach would be to 
“spawn” a Neural Network to look at each individual user’s requests.  This approach then 
complicates the system immensely; we encounter problems such as determining where the 
request originated from, if a bunch of people are behind Proxy connections, all users of the 
system will be analysed by the system as though they were a single user.  Further threats to 
the system itself exist as people may emulate this behaviour. 
 
Recurrent Neural Networks find structure in time, what if the structure of normal usage, or 
indeed misuse of the system contains no such structure.  Then the system will fail. 
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7 Implementation and Testing 
 

7.1.1 Commentary 

The implementation of the framework was quite straight forward and seemed to work well.  
The multiple EvReader classes helped a lot when trying to pull data from a number of places 
into the same training environment.  The tests which are about to be shown are those taken 
from four separate web sites, the first is a static, content only web site, the others are more 
complex sites which contain database access personal login pages and other dynamically 
generated content designed to test the robustness of the system.  The sites have not been 
named here but are all existing sites which could benefit from a system such as this. 
 
The attack data was collected from a number of sources, namely securityfocus.com, several 
underground hacking sites which can’t be named, packet traces from the DEFCON “capture 
the flag” (CCTF) competition and a trace generated from the Nessus security scanner.  All the 
traces used in these tests are approximately 5000 requests long, the data contained ranges 
from several distinct sessions. 

7.1.2 MLP Results 

 
The results using Multi-Layer Perceptron Neural Networks are promising.  Each of the sites 
was trained against the collection of attacks which were accumulated.  We find the results do 
differ between the different sites but all in all it works pretty well.  The training phase 
consisted of reading all the requests into EvTrSet objects, these then contained marked 
EvHTTPRequest objects (marked as attack or not attack).  This set was then split into two, 
picking the test and training set at random in a uniform manner.  The analyser was then 
trained on the training data, after every 1000 epochs the results were recorded.  This is what 
forms the basis for the following discussion.  All the data presented is the unseen data, the 
analyser is tested with a different data set from that which it was trained. 
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7.1.2.1 SITE A – CONTAINS ONLY STATIC PAGES 
 

Graph to show error reduction in test data set
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Graph to show the false positive and false negative identifications
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Graph to show correctness of identifications
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Fig 7.1 shows the reduction in error over the 7200 generations.  We can see that each run is 
fairly consistent reaching similar values each time.  However it is clear that the randomly 
chosen training and testing sets makes a different to the final result, looking at fig 7.4 we see 
the correctness can range from 95% right the way up to 100%.  With a static website is 
completely feasible to make sure all the pages in the site are used in training and this will 
eliminate any such error. 
 
If we take a look at fig 7.2 we see the plot of false negatives against false positives (see 
glossary).  We notice the number of false positives start off less than the false negatives and 
cross at about epoch 300.  This closely tallies with fig 7.1, as the error begins to fall.  These 
values never cross again but converge closer and closer together nearing zero.  On one 
occasion here the false positive and false negative rate both in-fact reach zero.  We should 
notice the rather large range in false negative values here however, in the worst case we 
receive a false negative rate of 33%, this is clearly unacceptable and we can only speculate 
that it was due to a badly chosen training set. 

 
 

  Worst  Best Average 
Correctness 95.2 100 98.11901 
False Negatives 0 0 13.33333 
False Positives 33.33333 0 0 

fig 7.4 
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7.1.2.2 SITE B – CONTAINS DYNAMIC PAGES 
 

Graph to show error reduction in test data set
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Graph to show the false positive and false negative identifications
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Graph to show correctness of identifications
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This web site contains log-in pages, many forms for posting data and much database access 
the variation in these traces is quite high.  However as you can see from fig 7.5, the response 
to the training process is extremely promising, on each of the three runs the error fell very 
low.  It also shows a high degree of consistency considering the random nature by which the 
training sets were collected.  Fig 7.6 shows a similar scenario to fig 7.2 where the false 
negative and positive rates cross, and then converge once again.  The false negative rate again 
reaches an outstandingly consistent value of 0%.  The false negative rates could be improved 
upon, it is more important to allow legitimate data through so this seems reasonable. 
 

 
 

  Worst  Best Average 
Correctness 99.04 99.4 99.24731 
False Negatives 2.60 0.537 0 
False Positives 0 0 0 

fig 7.8 
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7.1.2.3 SITE C – CONTAINS DYNAMIC PAGES 
 

Graph to show error reduction in test data set
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Graph to show error reduction in test data set
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Graph to show correctness of identifications
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This site took a little longer for the back-propagation to home in on the correct values, but the 
accuracy is unflawed.  The correctness is nearing 100% on all three occasions and actually 
reaches 100% in one case.  The best figure contains a zero false negative and false positive 
rates as you would expect.  Fig 7.10 shows the very fast convergence of these values, this site 
contains much E-Commerce processing and dynamic content and these highly accurate 
figures come un-expected. 

 
 

  Worst Best Average 
Correctness 99.5 100 99.75843
False Negatives 2.6 0 0.496581
False Positives 0 0 0

fig 7.12 
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7.1.2.4 SITE D – CONTAINS DYNAMIC DATA 
 

Graph to show error reduction in test data set
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Graph to show the false positive and false negative identifications
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Graph to show correctness of identifications
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This site has thrown up some oddities.  Fig 7.13 contains a much wilder training phase than 
all the other sites and produces much less quality error values.  Fig 7.14 shows an erratic 
convergence of false positive and negative rates, however they do seem converge at one point 
and then diverge again.  The point at which they converge (about 6300) epochs would be the 
point where the network is becoming over-trained and in a live environment we would stop 
the learning there.  The final graph; shown in fig 7.15 shows an equally erratic clime to a 
reasonable correctness level with an average of 89%.  This site doesn’t seem to fit as well to 
the model as the others seem to.   This does go to show the inherent inconsistencies between 
the different web sites and URL’s they will produce. 

 
  Worst Best Average 
Correctness 87 91 89.56969
False Negatives 9.8 3.8 6.531439
False Positives 26.7 18 22.29167

 
fig 7.16 
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7.1.3 GA versus Back Propagation  

Graph to show error reduction in test data set
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Graph to show the false positive and false negative identifications
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Graph to show correctness of identifications
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We can see from these results that the Genetic Algorithm used for training does indeed find a 
suitable level of accuracy.  However the time it takes to do so is much greater than the Back 
Propagation algorithm and so its use is no longer considered.  The nature of the Genetic 
Algorithm means that the weights will be manipulated in a much more random fashion and 
provide much less precise guidance into a reasonable error value. 
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7.1.4 PCA using unsupervised Neural Nets Results 

 
The PCA results look a little unnerving.  They reveal a very complex search space which 
seems to be much more complex than first thought.   
 

7.1.4.1 PCA RESULTS PLOTTED IN 2-D SPACE 
 

Site A 
PCA of Attacks and Normal data
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Site B 

PCA in 2 Dimensions of Attacks/Normal data
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Site C 
PCA of Attacks and Normal Data
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Site D 

PCA of Attack against Normal data
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All Sites 

Graph to show principle component analysis 2 dimensional plot of scores
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These results look a bit messy.  There seems to be no clear split between the two classes for 
any of the sites.  Site C seems to give the most clear cut distinction.  It may be necessary to 
look at a higher dimensional space, in essence finding more Principle Components.  Of 
course these cannot be plotted in a graph as the dimensionality is too high. 



________________________________________________________________________________________________________________ 
 

 
 

 
Page 65 of 184 

7.1.4.2 PCA RESULTS AS BAR CHART OF SCORES OF FIRST TEN PRINCIPLE COMPONENTS 
 

Graph to show PCA Scores for selected URL Strings
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Fig 7.20 shows the results of PCA for the first ten Principle Components.  We see no real 
correlation between any of the values here.  When we look at what the actual Principle 
Components are however we do see some interesting things appearing. 
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All the sites seem to pick out the ‘/’ and ‘.’ characters a lot, this is used in directory traversal 
attacks so this does has some significance.  The other thing to notice is the use the character 
‘X’, it happens that most of the buffer overflow attacks use this character for padding the 
buffer giving this relevancy.  Also notice that the size of the URL is quite probably the most 
significant thing in each of the sites.  We also notice vowels such as ‘i’ and ‘e’ popping up 
occasionally, of course most standard web site URLs’ are likely to contain vowels.  This PCA 
appears to give us some information in the analysis of what the MLP Neural Net may be 
exploiting, but seems unlikely to aid us in the classification task, as the scatter graphs of 
section 7.1.3.1 show. 
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7.1.4.3 PCA RESULTS – APPLICATION OF 10 NEARESET NEIGHBOURS IN 10-D SPACE 

 
Nearest Neighbours in 10 D space.
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The Nearest Neighbours algorithm applied to the 10 dimensional space plotted from the 
scores of the PCA gives reasonable accuracies.  We see ranges from mid fifties to seventy 
percent accuracy; this shows the application of PCA is mapping the output onto a reasonable 
lower dimensional space which allows for some crude classification.  Of course an MLP 
Neural Network may be able to use this pre-processed information and increase the accuracy 
of the classifications but it is promising to know that the points of interest are fairly close 
together after PCA in 10 dimensions. 
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7.1.4.4 PCA RESULTS AS PRE-PROCESSOR FOR AN MLP NEURAL NETWORK 
 

Graph to show error reduction in test data set
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The PCA network did not provide as good a solution as expected!  The graph in fig 7.26 
shows an example of an appalling run.  The elapsed time for this to run was just over 8 hours!  
It provides no indication of convergence to a reasonable error value.  This shows that PCA 
does not provide a very good pre-processor for the MLP for this problem.  PCA in general 
has been useful in some instances and not in others a further investigation into unsupervised 
learning and other statistical techniques is a worthy topic of investigation in the future. 
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7.1.5 Letter group occurrence analysis 

Graph to show normalised frequency of letter groups in URLs(Attacks)
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 fig 7.27 
Graph to show normalised frequency of letter groups in URLs(Normal data)
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fig 7.28 
 
From fig 7.27 and fig 7.28 we can generally see a lower frequency of vowels in the attack 
strings.  This is probably due to the nature of an attack, as other characters such as buffer 
overflow padding an egg code is normally added, this will wash out the vowel frequency.  
We also notice the increased use of Unicode and hexadecimal values; these are not normally 
attributed to normal URL strings to the same extent. 
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7.1.6 Recurrent Neural Net Results 

 
An Elman Network (section 6.4.3) was implemented in the original version of this project 
(Appendix 10.1.2).  The use of Recurrent Neural Nets (RNNs’) required a completely 
different approach to the design of the analysis and event engines.  The use of sessions, 
whereby a Network would look after a particular user’s session and analyse its behaviour was 
used.  The use of such a complex framework meant that the complexity of the program 
escalated. 
 
Many problems emerged, such as how to decide which session a particular request belonged 
to.  The HTTP protocol does not contain the concept of sessions in this sense (of course 
Session state can be used).  Other problems emerged such as the spoofing of IP Addresses, 
which will throw off any session based analysis.  Other issues include the use of Proxy 
Servers, if the user of the web site is behind a Proxy Server the users from behind the proxy 
will look like they are from the same IP address.  This complicates matters further and leads 
to a very unstable design which has no practical use. 
 
The actual use of RNNs’ becomes very complex when dealing with patterns over time.  
Ignoring all the problems stated above, the system was implemented.  Sessions were hand 
crafted to ensure that they were correct and the data sets were created.  The Neural Network 
was able to learn the patterns of session based activity, but when given a new session it had 
not seen before, the system failed spectacularly.  It seems that Elman networks are very 
capable of learning the patterns of requests through time but have absolutely no chance of 
any generalization task.  The search space appeared very complex and no real patterns were 
present in requests in time. 
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7.1.7 Deployment of a live system 
7.1.7.1 COMMENTARY 

 
The system can be deployed in a number of ways.  The EvReader interface (section 5.2.3) 
can be implemented allowing a generic way for the AnalysisEngine to receive analysis 
requests.  Several ideas were discussed and the system implements two such systems as live 
systems which are ready to be used.   
 
The first idea for the deployment of the URL scanner would be to use it inside the Web server 
itself.  This would require adding the system to a current Web server or indeed building a 
new one.  This would mean that each request received is analysed and the connection 
abandoned if deemed malicious. 
 
The second idea for deployment is to use the library libpcap which was used in training.  This 
system provides a nice structure to access Ethernet cards and would be an implementation of 
a packet sniffer/sucker. 
 
The final idea for deployment of our system is to implement an application level firewall.  
This would be a Proxy Server that forwards requests to the Web Server.  Requests would not 
be forwarded if the analysis engine deemed the request malicious. 
 
The final implementation only uses the latter two, below is a discussion of their 
implementations. 
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7.1.7.2 PACKET SNIFFER 
 
 The Packet Sniffer is implemented in the class EvReaderJPCap.  Its use implements the 
EvReader interface using the JPCap library.  This library is a java wrapper for libpcap, the 
infamous UNIX packet capture library.  Implementation was fairly straightforward as the 
JPCap library offers a lot of functionality which saves time. 
 
The problem with this kind of system is it is really a detection system.  The system will run 
on a computer on the same network as the Web Server, or indeed the same machine as the 
Web Server.  If the system is on different machine the network card of that system will need 
to be set to promiscuous (see glossary).  Also this topology will not work unless the hub is 
not switched.  If it is a switched hub or router the requests will not reach the Packet Sniffer. 
 
 If the Packet Sniffer sees a packet it thinks is malicious it will log the event.  A statistics 
broadcast is displayed every few minutes to inform people of the number of attempted 
attacks. 
 

 
 
 
 
 
Fig 7.29 shows a typical installation of such a system.  Any 
attempt to attack the Web Server will be recorded for 
analysis by the Packet Sniffer.  It is better to have it on 
another machine, because if the Web Server is compromised 
the log files could be erased. 
 
 
 
 
 
 
 
 

Fig 7.30 shows a console output of this system running.  Appendix 10.3.1 shows the results 
of analysis of some selected data in the form of a log file. 
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7.1.7.3 APPLICATION LEVEL FIREWALL, PROXY SERVER 
 
A firewall is normally associated with a system which blocks particular IP, TCP, UDP, ICMP 
etc packets according to a set of rules.  IPCHAINS and Microsoft’s ISA are such systems.  
Firewalls can however be at the application level applying rules for the passing of packets.  It 
seems like a good idea to include an application firewall approach to the deployment of the 
system.  Reasons for this include the benefits of a standard firewall; 
 

• Requests that do not meet the criteria specified are simply not allowed to pass, so the 
success of the attack is greatly reduced. 

• The Web Server is not less likely to receive garbage which will eat resources on the 
system. 

• The implementation is Web Server independent, i.e. it will work on IIS and Apache. 
 
Below is the architecture of a typical implementation of such a system; 
 

 
 
 
The simplest way to implement this kind of system is to 
write a Proxy Server.  This is a server which sits on the 
firewall computer.  Requests for the Web Server are first 
dealt with by our Proxy Server.  If the request passes 
analysis it can be forwarded on to the Web Server and the 
response given to the client.  It is important to give a 
confusing message to the attacker who is attempting the 
attack.  Such a message would be to close the connection, or 
to return a page not found error or such like. 
 
 
 

Here is the console output when running this system when an attack is received; 
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8 Conclusion 
 
The goal of the system was to investigate the field of Intrusion Detection in an attempt to 
apply Artificial Neural Networks to the problem domain.  Contrary to most other Intrusion 
Detection Systems we looked not at the transport and network layers but at the application 
level protocols, namely the HTTP protocol. 
 
A number of techniques were applied in analyzing HTTP request data, in an attempt to detect 
attacks whilst keeping the false alarm rate to a minimum.  [ids12] tells us that the false alarm 
rate is actually the limiting factor and shows the system to be useful.  System administrators 
will become much more willing to investigate an attack attempt if the false alarm rate is low, 
or in fact non-existent.  The results found in this investigation show varying degrees of 
success in this task. 
 
With an MLP trained with Back Propagation, static web sites seem to be able to gain an 
accuracy of 100%.  Dynamic web sites provide less accurate results but these results are still 
in the high 90’s.  We should notice that two out of the three dynamic web pages were able to 
gain false alarm rates (false positives) at 0% on more than one occasion.  These results are 
very promising.  Further investigation could be done into discovering what sorts of URL 
strings help the system learn better and guidelines for users of the system could be produced. 
 
When we replaced the Back Propagation algorithm with a Genetic Algorithm (GA) we found 
that the GA was capable of finding a suitable set of weights.  However the length of time the 
Back Propagation algorithm took to train was far shorter than the GA.  The superiority of the 
Back Propagation algorithm led us to no longer consider the GA in the testing process.  
 
PCA provided little information as to the workings of the system.  It did provide us with 
some insight into the kinds of characters we see in the normal and attack data.  This 
information could have been useful in constructing a pre-processor for our MLP Neural Net 
but actually provided a very poor solution. 
 
Recurrent Neural Nets were looked into as an analytical technique.  This task became quite a 
major one and the investigation into the Elman network was aborted due to the wildly poor 
results. 
 
Finally we looked at a very simple analysis of groups of letters in order to discover if there 
was some simple way to classify the data.  What we found was some correlation between the 
characters involved in attacks and those not, but a significantly obvious relationship did not 
exist.
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The other functional requirements were fulfilled as follows; 
 

1. The system must be able to read HTTP messages from a variety of sources.  These 
must include raw network packets, log files and TCP/IP sockets. 

 
This requirement was met through the EvReader interface and its implementation see 
section 5.2.3. 
 
2. The user will be able collect the necessary training data using an appropriate tool. 

 
This requirement was fulfilled, with the use of the EvReader implementation using 
the packet capture library JPCap.  The EvReaderJPCap reader can be combined with 
the AeAnalyserDump class which dumps the data to the disk for further analysis later. 

 
3. The user will be able to train the neural network based analysis engine. 

 
The WiTrainEnv and the WiComponentFactory object allow the user to configure the 
training environment in which the system is trained.  The highly configurable nature 
of the system allows the user to implement their own AeAnalyser objects if they wish. 

 
4. The system must be able to be started and stopped by a privileged user of the 
system. 

 
The system requires root access to the system in order to open the EvReaderJPCap in 
live mode.  It may only then be killed by a privileged user of the system. 

 
5. The system will be capable of learning the difference between a normal HTTP   
message and an anomalous one. 
 
This was the main goal of the project.  This requirement has been full-filled as the 
analysis engine provides high levels of accuracy. 

 
6. The system is required to notify a system administrator when a sequence of events 

that is likely to be an attack is encountered. 
 

The framework of the system allows a system administrator to register an EvObserver 
object with the Event Engine.  If a possible attack is detected the Event Engine will 
then notify the registered observer objects.  Administrators may implement these 
objects as they choose. 

 
7. Statistics of the systems operation must be able to be collected for analysis and 

review. 
 

Each AeAnalyser object writes out statistics regarding the analyzers performance. 
 
The non-functional requirements were also fulfilled as stated; 
 

1. The system must be easy to train for new users of the software.  The mechanism 
for training the system used must be easy to understand and allow someone with a 
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reasonable background in computer networks to capture the correct data and use 
the training software to create an analysis engine for their network. 

 
This requirement has been fulfilled as much as possible, although the system is fairly 
difficult to set up and use.  Future work could make this part of the system nicer. 

 
2. Users of the system must be able to start and stop the system easily. 
 
This is simply a matter of being root and typing; 
 
java WebIDS.WiTrainEnv 

 or java WebIDS.WiOpenLive 
 

into the console, and so anyone with any knowledge of UNIX should be able operate 
the starting and stopping of the system. 

 
3. Users of the system must be able to configure any parameters the system may use 

in an easily manageable way. 
 

All parameters are configured from constant values in individual class files.  Main 
things, such as which EvReader and which AeAnalyser to use are configured through 
the WiComponentFactory class.  This seems reasonable, although it could be 
improved upon. 

 
 
This project was investigation into Intrusion Detection within a Web Server.  We found a 
suitable method of analysis by using an MLP Neural Network.  Each requirement was 
fulfilled to a degree. 
 
The project has opened up many avenues of investigation.  Namely Recurrent Neural 
Networks and their application to this kind of system may provide a better analytical 
technique.  Other future work includes the use different Neural Network architectures which 
may or may not be better suited to this kind of analysis. 
 
Research within the IDS area tends to be heading more towards a distributed approach, where 
a number of analytical techniques are employed looking at several avenues within the system 
[ids2].  These kinds of systems can then draw correlations between a number of different 
analytical paths within the system. 
 
Finally, this project was looking at the HTTP protocol.  It would be interesting to see whether 
other internet protocols respond to this kind of analysis in a similar manner.  The use of these 
techniques on encrypted protocols, such as SSH unearth another potential problem.
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[r2] Perdita Stevens,Pooley Rob, Using UML. 
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10 Appendices 

10.1 Source Code 

10.1.1 WebIDS version 2 – Final Version 
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10.1.1.1 WEBIDS PACKAGE 
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10.1.1.2 WEBIDS.EVENTENGINE PACKAGE 
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10.1.1.3 WEBIDS.EVENTENGINE.PARSEHTTP PACKAGE 
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10.1.1.4 WEBIDS.ANALYSISENGINE PACKAGE 
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10.1.2 WebIDS version 1 (aka IDSSystem) – Original Version (uses session based analysis). 
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10.1.3 WebIDS version 1 (aka IDSSystem) – Original Version (uses session based analysis). 
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10.1.3.1 IDSSYSTEM PACKAGE 
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10.1.3.2 IDSSYSTEM.EVENTENGINE 
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10.1.3.3 IDSSYSTEM.ANALYSISENGINE 
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10.2 Literature Survey Research Comments by D.Ellis 
 
This literature survey is divided into three sections; the first section refers to material covering security 
exploits that pose threats to computer systems.  These include tutorials on buffer overflows, Unicode, CGI 
exploits and format string exploits. 
 
The second section covers current Intrusion Detection research; some of the papers in this section include 
the use of Neural Networks to analyze various types of data.  Others cover various types of intrusion 
detection system, ranging from network intrusion detection systems to log and host-based systems as well as 
systems that correlate all these types of data. 
 
The third section is to do with Neural Networks; it contains papers, books and articles referring to various 
types of neural network.  Most of the material in this section covers recurrent Neural Networks. 
 
The fourth and final section covers material on networks particularly TCP/IP networks and HTTP the 
protocol. 

10.2.1 Security Exploits 
 
[se0] Phrack  49 Oo Vol 7 Issue 49 Smashing the Stack for fun and profit 
This is a tutorial on writing buffer overflow exploits by “smashing the stack”.  Very good reference for attack signatures of buffer overflows. 
 
[se1] Mudge: How to write Buffer Overflows Tutorial 
Self expalanator, paper on how to find and write buffer overflow exploits. 
 
[se2]  scutt/team teso, Exploiting Format String vunerabilities. 
This is an excellent tutorial about a fairly recent type of vulnerability concerning printf and its relatives. 
 
[se3]  rain.forest.puppy, Perl CGI problems, Phrack Issue 55 
 
Explains some exploits for perl program; 
 

• The use of \0 is different from c. (end of line in c).  Therefore allowing you to enter a string in which is say root\0garbabe, the perl 
scanner may say is it “root” and of course it is not!  The c program this is passed to will simply read it as “root” and the security 
check has been bi-passed. 

• The use of directory traversals, and how to escape them etc.  A program may use directory traversal in order to jump out of the 
standard web root directory into the main part of the system, this allows the user to execute arbitrary commands, the directory must 
be executable and the commands the attacker wishes to execute must be chmod’ed correctly. 

• Use of pipe to get perls’ open() to execute a program, i.e. open(“/bin/sh|”).  This allows a user to execute arbitrary commands, if it is 
known that the open call is used, and a cgi parameter is taken in representing some file, a pipe command will open the file as a 
command. 

 
[se4] Gregory Gilliss, CGI Security Holes, Phrack Magazine,Volume Seven, Issue Forty-Nine 
 
Explains some more cgi exploits; 
 

• A bad choice of functions to use i.e. System calls provides possible security breaches. 
• Redirects > in scripts allow the redirecting of the standard output causing files to be read. 
• The use of null , again in perl provide a potential for poorly scanned input data to execute malicious code. 
• Also outlines people grabbing password files. 

 
[se5] rain.forest.puppy, NT Web Technology Vulnerabilities, Phrack Magazine, Volume 8, Issue 54 Dec 25th, 1998 
 
This paper iterates some interesting vunerabilities in Microsoft’s IIS Web Server. 
 
These do apply to any out of the box setup. 
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• Standard scripts can be a problem.  If the site is using a standard scripts and a hole has been discovered in this script, the attacker 
potentially has access to the source code of the script and can look for security vulnerabilities in it. 

• IIS contained a security threat where it was possible to look in say c:\winnt\system32 or whatever, on any IIS Web Server. 
• Using directory traversals. ../ has been a classic for IIS; many such vulnerabilities exist. 
• Executing SQL Query’s through IIS was a bug which allows an attacker to issue any queries to the database.[se6] Scambray Joel, 

McClure Stuart and Kurtz George: Hacking Exposed 
 
This book is a catalogue of exploits classifying them into various types of attack.  It is quite useful for an overview of the area but contains little  
technical information with which to work with. 
 
[se7]  horizon jmcdonal@unf.edu, Defeating Sniffers and Intrusion Detection Systems,Phrack Magazine   Volume 8, Issue 54 Dec 
25th, 1998, article 10 of 12 
 
This paper talks about various ways to defeat Sniffers and IDS’s; 
 

• Fragmentation of TCP segment headers.  This means, if the IDS is not capable of fragment reassembly packets, malicious packets can 
pass through fine. 

• Bad stack decoding/cost extra options in IP header.  Most systems use a naïve approach to stack decoding, as most IP packets don’t 
contain things like options.  If this is the case putting options in may lead the IDS to misinterpret the packet. 

• Invalid sequence numbers.  This can cause the IDS to crash if it doesn’t contain a robust enough stack decoder. 
• Many systems can launch off on wrong track, once spawned they will  look at the TCP Session leaving malicious packets to sail 

through. 
• De-Synchronization of TCP sequence numbers can cause the IDS to become confused. 
• TCP checksum insertion.  Invalid checksums can cause the IDS to slow down and possibly allow packets through. 

 
[se8] HTTP://www.theregister.co.uk/content/archive/22010.html 
 
Top Vulnerabilities at the moment; 
 

• Default installs of operating systems and applications. 
• Accounts with No Passwords or Weak Passwords. 
• Non-existent or Incomplete Backups. 
• Large number of open ports. 
• Not filtering packets for correct incoming and outgoing addresses. 
• Non-existent or incomplete logging. 
• Vulnerable CGI Programs 

 
Top Windows vulnerabilities  
 

• Unicode Vulnerability (Web Server folder traversal). 
• ISAPI extension buffer overflows. 
• IIS RDS exploit (Microsoft Remote Data Services). 
• NETBIOS - unprotected Windows networking shares. 
• Information leakage via null session connections. 
• Weak hashing in SAM (LAN Manager hash). 

 
Top Unix system vulnerabilities  
 

• Buffer overflows in RPC services. 
• Sendmail vulnerabilities. 
• BIND weaknesses. 
• Remote commands. 
• LPD (remote print protocol daemon). 
• sadmind and mountd. 
• Default Simple Network Management Protocol (SNMP) strings. 
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10.2.2 Intrusion Detection Systems 
 
[ids0] Helmer Guy G, Wong Johny S.K, Honavar Vasant and Miller Les.  Intelligent Agents for Intrusion Detection. Ames, Iowa. 
Interesting idea, taking a number of distributed IDS’s and using them correlate the data together, to get a better model of the usage of the 
system.  Uses System call traces, instead of live TCP/IP analysis. 
 
[ids1] Cannady James, Artificial Neural Networks for Misuse Detection. 
This paper iterates the issue of identifying the attack accurately and quickly.  It compares Expert System approaches against Neural Networks. 
 
Expert Systems - identifies exact matches by following list of rules and determining whether an attack is being attempted or not. 
Disadvantages include: 

• Must add in attacks as they are discovered. 
 
The use of Neural Networks identifies a probability of the attack matching a previously seen pattern, therefore the quality of the network is 
based on how much it has seen previously. 
 
Disadvantages of this approach include; 

• The system is a Black Box.  It is difficult to know what it is doing. 
• Attack traces are difficult to obtain. 

 
The paper discusses Misuse detection, again re-iterating the fact that a sequence of events warrants an intrusion.  It re-iterates the fact that 
once an exploit is found, many others will use it giving a motivation for using misuse detection. 
 
The paper gave some good ideas for collecting training data.  Namely ISS Internet Scanner, Satan.  It also gives a way of encoding the Data 
into the Neural Net which is worth reading when developing such a system. 
 
References Worth Chasing: 
 
[2]  Computer Vision Material[6]  International joint conference on Neural Networks Recurrent Networks[7]  Computers and Security 
Vol 13 No 6 pp 495-507[8]  An Intrusion Detection Model IEEE Transactions on Software Engineering, Vol SE-13 No 2.[9]  TISC[14] 
QStat [25][26] 
 
[ids2]Balasubramaniyan Sundar Jai, Garcia-Fernandez Omar Jose, Isacoff David, Spafford Eugene, Zamboni Diego, An 
Architecture for Intrusion Detection using Autonomous Agents. 
The paper gives a definition of Intrusion Detection; 
 
“Problem of identifying individuals who are using a computer system without authorization, and those who are abusing their rights on the 
system (“escalation of priveledges.” 
 
The paper goes on to state that Intrusion Detection is not prevention, and provides some desirable characteristics of an IDS; 
 

• Always running 
• Fault tolerant 
• Resist Subversion (Attacks on IDS) 
• Minimal overhead 
• High Scalability 
• Degradation of service should not affect the rest of the network. 
• Dynamic configuration 

 
The paper goes on to review the use a Distributed IDS versus a Monolithic [15] approach.  The problems which were identified with centralized 
system include; 

• One point of failure. 
• Scalability problem, what happens when we want to increase the system to run on a bunch of machines. 
• Analysis of network data can be flawed. 
• Such a system is vulnerable to Insertion/Evasion attacks. 

 
The paper gave a good reference to a paper on Genetic Programming for Intrusion Detection [3]. 
 
Other issues which they consider in the system; 

• Portability 
• Scalability 
• Security 
• Performance 
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[ids3] Ghosh Anup K, Schwartzbard Aaron and Schatz Michael, Learning Program Behavior profiles for Intrusion Detection. 
 
The system described in the paper is part of the DARPA Intrusion detection evaluation program.   DARPA provide such systems with data for 
training and testing their systems. 
 
They talk about Anomaly Detection and Misuse Detection, Misuse Detection tends to give low false positive and high false negative (many 
attacks get through, but ones that don’t are identified correctly).  Anomaly detection tends to give high false positive rates, has an inability to 
identify a particular attack.  Must make sure training data is clean. 
 
Strace – program that logs system calls was used in their investigation therefore it is a host based system.  They iterate that Deterministic Finite 
State Automatons constructed by hand state result in state explosion these problems are described in [6].  They back up their reasoning of using 
system call traces by stating; 
 
“A program can only abuse a system by making system calls.” 
 
They also talk about the time aspect of an attacker; 
 
“Anomalous behavior tends to come in clusters.” 
 
The paper discusses the use of Back Prop examples in [7,1].  They then talk about recurrent Neural Nets such and implement the Leaky Bucket 
algorithm, used in temporal locality detection, and Elman networks- recurrent nets (look into these further). 
 
[ids4] Ghosh Anup K and Schwartzbard Aaron, A Study using Neural Networks for Anomaly and Misuse Detection. 
 
This is another DARPA project using their evaluation data again, the work is from Lincoln Labs at MIT.  The paper iterates issue of being able 
to detect future unseen behavior rather than previously known attacks.  The paper emphasizes the importance of low false alarm rates; high 
false alarm rates make IDS’s impractical due to the amount of work the system admin must do. 
 
The paper talks about the importance of being able to generalize over the input, i.e.  

• Detecting future normal behavior. 
•  Detecting future abusive behavior. 

 
The paper discusses the first proposal of Anomaly Detection, by Anderson in 1980- check out.  It also discusses Expert System Anomaly 
detection models in [15]. 
 
The paper talks about a number of classes of attacks and informs the reader on the performance of the system with regard to a number of 
classes these include; 
 

• DOS 
• Probing /Surveillance 
• Remote to local 
• User to root 

 
 
They also talk about the distinction between Network / Host based systems and draw conclusions as to their uses.  The paper also interestingly 
talks about the human immune system [6] and its application to this topic, distinguishing between self and non-self. 
 
They include a discussion of the anomaly detection model they use; 
 

1. Initialize NN with random data. 
2. Train with normal data, so one area of the input space becomes identified with normal data.  Temporal Locality problem again, leaky 

bucket algorithm is used. 
3. ROC Curves Receiver Operating Characteristics.  This seems to be industry standard for showing IDS results. 

 
The paper concludes by talking about their results, the misuse fails to generalize well and gives high false positives. 
 
[ids5] Ranum J Marcus, LangField Kent, Stolarchuk Mike, Sienkiewicz Mark, Lambeth Andrew, Wall Eric, Implementing a 
Generalized tool for network monitoring. 
 
This system is essentially a statistics gathering engine, shows a programming language for pulling packets apart and recording information or 
dropping them.  Mentions libpcap, a useful interface as it exists on all UNIX systems and can be found for windows.  The paper outlines the risk 
of buffering a loss of packets. 
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[ids6] Paxton Vern Bro: A System for Detecting Network Intruders in Real-Time 
 
This is an intrusion detection language similar to [ids5].  However it is more advanced, it is based on rules that are coded using the language 
Bro, this also uses libpcap. 
 
[ids7] Cannady James, Next Generation Intrusion Detection: Autonomous Reinforcement Learning of Network Attacks. 
 
This paper outlines an interesting approach to detecting intrusions, very different from anything else seen so far.  It uses an unsupervised 
Neural Network.  This system works only with DOS attacks however. 
 
The paper describes the use of CMAC Neural Networks.  These could be useful and are worth investigating. 
 
The system uses network de-gradation to train the system dynamically to detect intrusion. 
 
[ids8] Schuba Christoph L, Krsul Ivan V, Kuhn Marcus G, Spafford Eugene H, Sundaram Aurobindom, Diego Zamboni: 
Analysis of Denial of Service Attack on TCP. 
 
The paper involves a detailed explanation of the SYN flood attack, and ways to detect and resolve the threat.  The presented solution involves 
basically by returning fake ACK’s and waiting for the real ones later, to move connections to full open state. 
 
[ids9] Machine Learning Techniques for the Domain of Anomaly Detection for Computer Security 
 
This document involves a detailed discussion of AI techniques for anomaly detection, useful for ideas on types of machine learning.  It talks 
about rule based /statistical models as well as the adaptive systems approach. 
 
[ids10] Northcutt Stephen, Cooper Mark, Fearnow Matt, Karen Fredrick.  Intrusion Detection Signatures and Analysis. Chpt 10-
11 
 
This book takes you through a number of log file formats including tcpdump output, SNORT output etc.  It talks you through the kinds of things 
to look for in looking for attack signatures 
 
Attacks of interest include; 
 

• DOS attacks – resource starvation versus bandwidth consumption. 
• Land Attack- exploit code at ftp.technotronic.com. 
• TOS bit was set to 0x30 for UDP.  (Abnormal packet). 
• Winnuke – URG to netbios port.  This causes the netbios to expect data.  The data never comes and RST packet is sent.  Causing “blue 

screen of death”. 
 
[ids11] 0x0b[0x10],  A STRICT ANOMOLY DETECTION MODEL FOR IDS, Volume 0xa Issue 0x 05.01.2000    - P H R A C 
K   M A G A Z I N E – 
 
This paper describes a model of anomaly detection.  Phrack people don’t seem to like the author!  Doesn’t really give any relevant information. 
 
[ids12] The Base-Rate Falacy and its implications for the difficulty of Intrusion Setection 
 
This paper outlines an important point that the false alarm rate must be tiny for the system to be of any use.   Uses Bayes theorem to show how 
ineffective a 99% accurate system is. 
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10.2.3 Neural Network material 
 
 
[nn0] Bishop Christopher M: Neural Networks for pattern recognition Chpt 8. 
 
This book is the definitive book on Neural Networks. 
 
Chapter 8 gives an enlightening discussion of pre and post processing of data when using ANN’s. 
 
Points that were useful included; 

• Fewer inputs mean less dimensions, and therefore higher degree of generalization, and the system will train faster. 
• Pre-processing of data means less information and decreases dimensionality and so the above point 

applies. 
• Re-scaling of input parameters so they are of similar range, makes the Neural Network more likely 

to work quicker and be more accurate. 
 
Chpt 4. Gives a detailed discussion of MLP’s 
 
This chapter contains the necessary literature to understand and implement back propagation. 
 
Page 267. 
 
This page provides a discussion of the use of a momentum term in Back Propagation algorithm. 
 
[nn1] Jeffrey Elman, Finding Structure in Time, 1990. 
 
This paper gives an interesting proposal for a Neural Network architecture capable of finding structure in time.  He goes through a number of 
ways to represent time in Neural Networks these include; 
 

1. Explicit serial order with dimensionality of inputs. 
 
The problems with this approach include; 

 
o  input buffer. 
o When should contents be examined. 
o Rigid enforcement of duration. 
o Does not distinguish between relational/absolute outputs. 

 
Elman proposes the use of an extra layer of “context units”.  These units are designed to capture internal state at each activation of the 
network.  At each pass internal state is saved, thus representing temporal properties of sequential inputs.  He concludes by discussing the 
change in the structure of the problem when represented temporally. 
 
[nn2] Danilo P. Mandic, Jonathon A. Chambers.  Recurrent Neural Networks for prediction.  Learning Algorithms, Architectures and stability 
chpt 5. 
 
This book discusses Recurrent Neural Networks and provides a number of architectures.  It contains a discussion of the difference between feed 
forward vs Recurrent Neural Nets and indicates where both such topologies are useful; 
 

• Recurrent Neural Nets suffer from instability and are sensitive to noise 
• Feed Forward Neural Nets may not be powerful enough to capture the dynamics of the problem. 

 
It outlines how the Dynamics and/ complexity of a problem is implementation dependant and therefore each problem requires a different Neural 
Net. 
 
Recurrent Neural Network Architectures discussed in the book include; 
 
Activation feedback 
Output feedback 
Locally Recurrent Globally feedforward category. 
Elman/Jorden – limited in storing past information. 
William Zipster Network— captures more info.  
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[nn3] Principe Jose C, Euliano Neil R, Lefebvre W Curt.  Neural and Adaptive Systems Chapter 6, Chapter 3; 
 
This book gives a good discussion and the necessary technical detail to implement Unsupervised Neural Networks.  In particular Hebbian 
learning, Oja/Sangers rule and their use for PCA. 
 
[nn4] Russel Stuart, Norvig Peter.  Artificial Intelligence A Modern Approach. 
This book provides the Back Propagation equations necessary to implement a Back Propagation algorithm. 
 
[nn5] Ellis David.  Non-Symbolic AI assignment; Training Algorithms for MLP networks. 
 
This document compares a genetic algorithm with standard Back Propagation and Back Propagation with momentum. 
[nn6] Recurrent Networks [1,2,3], http://www.williamette.edu/~gorr/classes/cs449/rnn1.html up on 22/12/01 
Discussion of Recurrent Networks, back prop through time and patterns in time. 
 
[nn7] Haselsteiner Ernst, What Elman Networks Cannot Do. 
 
This paper shows a group of tasks which Elman networks are incapable of learning. 
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10.2.4 Computer Networks and Services 
 
[n0] Stevens W. Richard: TCP/IP Illustrated Volume 1, The Protocols, Volume 2 The implementation, Volume 3 TCP for 
transactions, HTTP, NNTP and UNIX domain protocols. 
These books provide an in depth guide to TCP/IP protocols, very useful for working out how TCP/IP works and some useful tricks in the 
implementation of TCP. 
 
[n1] Packet Capture with libpcap and other low level network tricks. 
This is a great tutorial showing you how to write a packet capture engine, using libpcap in c. 
 
[n2] W. Richard Stevens.  TCP/IP Illustrated Volume 3.  Chapters 12/13 (HTTP Protocol/Packets found on an HTTP server). 
This is a great book focusing on application level protocols.  Statistics for internet services usage were reported outlining the growth of the 
HTTP protocol; 
 ftp://ftp.merit.edu/statistics - nfs back bone closed in 1995. 
 
Talks about HTTP/1.0; 

• Multiple connections.(not persistant HTTP/1.0) 
• Congestion avoidance and rtt etc. not passed on to all connections. 
• Vunerable to lots of open half connections 

 
The Concept of a “Session” in HTTP was discussed and mentions; 
 
(Kwan McGrath and Reed 1995. User Access Patterns to NCSA’s World Wide Web server.) 
 
The book outlines the problem with one doc per connection, it reacts badly with TCP as slow start and all the other things are not shared 
between connections.  Keeping connection open if cache size of response is known was also discussed. 
 
[n3] RFC HTTP/1.1. 
The Request For Comment on HTTP/1.1 protocol.  Main points that were found useful; 
 

• Connections now persistent by default.  Before one connection was made for every request.(Memory/cpu time saved for 
Clients/servers/gateways/proxies/routers). 

• Pipe-lined requests possible.  This allows multiple connections to open from the same client making a number of requests.  
(Congestion reduced.) 

• Latency better, as there are less half open connections about. 
• HTTP’s evaluation better is better. 
• Connection header field, explicitly close connection.  HTTP/1.0 assumed the connection will close, HTTP/1.1 says user must explicitly 

close it. 
 

The RFC states includes the grammar for HTTP which was used in the implementation of WebIDS. 
 
[n4] http://www.mit.edu/people/mkgray/net/web-growth-summary.html 
 
This site gives out statistics on what internet services people are using.  It is very useful for determining the most popular serv
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10.3 Excess Test data 

10.3.1 Selected URLS and their classifications via the MLP network 

 
/ContentManagement_Local/QuoterEngine/inc/stdlib.js  2.16E-05 
/ContentManagement_Local/QuoterEngine/inc/validate3.js  5.90E-06 
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/ContentManagement_Local/Brands/BuildersDirect/scripts/GeneralUtility.js  1.80E-05 
/ContentManagement_Local/QuoterEngine/inc/stdlib.js  2.16E-05 
/ContentManagement_Local/QuoterEngine/inc/validate3.js  5.90E-06 
/ContentManagement_Local/QuoterEngine/Images/16x16Note.gif  4.66E-05 
/scripts/..%c1%1c../winnt/system32/cmd.exe?/c+dir  3.889031336 
/scripts/..%c1%1c../winnt/system32/cmd.exe?/c+dir  3.889031336 
/scripts/..%c1%1c../winnt/system32/cmd.exe?/c+dir  3.889031336 
/scripts/..%c0%af../winnt/system32/cmd.exe?/c+dir  3.865881341 
/%20scripts/..%c1%9c../winnt/system32/cmd.exe?/c+dir  3.887250169 
/scripts/..%25%35%63../winnt/system32/cmd.exe?/c+dir  3.906648224 
/scripts/root.exe?/c+dir  3.983254482 
/scripts/root.exe?/c+dir  3.983254482 
/scripts/root.exe?/c+dir  3.983254482 
/c/winnt/system32/cmd.exe?/c+dir  3.984855172 
/d/winnt/system32/cmd.exe?/c+dir  3.987073659 
/scripts/..%255c../winnt/system32/cmd.exe?/c+dir  3.905079296 
/_vti_bin/..%255c../..%255c../..%255c../winnt/system32/cmd.exe?/c+dir  3.999631297 
/msadc/..%255c../..%255c../..%255c/..%c1%1c../..%c1%1c../..%c1%1c../winnt/system32/cmd.exe?/c+
dir  3.877184856 
/ContentManagement_Local/QuoterEngine/Content/GlossaryPopup.asp?Term=Paint  6.61E-06 
/ContentManagement_Local/QuoterEngine/inc/stdlib.js  2.16E-05 
/ContentManagement_Local/QuoterEngine/inc/stdlib.js  2.16E-05 
/ContentManagement_Local/QuoterEngine/inc/validate3.js  5.90E-06 
/ContentManagement_Local/default.asp?qtbid=5&qtcid=QL&qtqecid=23  9.04E-05 
/ContentManagement_Local/default.asp?qtbid=5&qtcid=QL  1.53E-04 
/ContentManagement_Local/Brands/BuildersDirect/scripts/GeneralUtility.js  1.80E-05 
/ContentManagement_Local/QuoterEngine/inc/stdlib.js  2.16E-05 
/ContentManagement_Local/QuoterEngine/inc/validate3.js  5.90E-06 
/ContentManagement_Local/default.asp?qtbid=5&qtcid=QL&qtqecid=23  9.04E-05 
/ContentManagement_Local/Brands/BuildersDirect/scripts/GeneralUtility.js  1.80E-05 
/ContentManagement_Local/QuoterEngine/inc/stdlib.js  2.16E-05 
/ContentManagement_Local/QuoterEngine/inc/validate3.js  5.90E-06 
/ContentManagement_Local/default.asp?qtbid=5&qtcid=QL&qtqecid=64  5.77E-05 
/ContentManagement_Local/Brands/BuildersDirect/scripts/GeneralUtility.js  1.80E-05 
/ContentManagement_Local/QuoterEngine/inc/stdlib.js  2.16E-05 
/default.ida?NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN%25u9090%25u6858%25ucbd3%25u7801%25u9090%25u6
858%25ucbd3%25u7801%25u9090%25u6858%25ucbd3%25u7801%25u9090%25u9090%25u8190%25u00c3%25u0003%25
u8b00%25u531b%25u53ff%25u0078%25u0000%25u00=a  3.995857781 
/ContentManagement_Local/default.asp?qtbid=5&qtcid=QL  1.53E-04 
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10.3.2 Graph to show exploits being detected 

Graph to show how the MLP Analyser is able to pick out attacks
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We can see the ease at which the MLP is able to pick out the Code Red and Nimbda attacks. 
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10.4  Glossary 
Anomaly 
Detection Model 

Where a system is trained with normal data, following this it is able to detect deviations 
from the normal. 

Attack Attempt to misuse or compromise a computer system in any way. 

Attacker 
An attacker is a person or program that has purposely set out to misuse a computer 

system in some way. 

CGI 
Common Gateway Interface, The interface specification defining how information can be 
passed back and forth from browser to client. 

Correctness The percentage of correctly identified attacks the system has made 

Data sets The data used to train a neural network, usually labelled with the correct classification. 

False Negatives The number of anomalous sessions incorrectly identified as normal sessions. 

False Positives The number of normal sessions incorrectly identified as anomalous sessions. 

Firewall A Program or piece of hardware which filters packets before forwarding them onto a host. 

Fragmentation 
Where packets are broken up and sent in separate IP packets, the application must re-
assemble the packet on arrival.  Note TCP headers may be fragmented. 

Generalisation 
The ability to generalise input over passed seen behaviour.  For example if you see one 
cat you can then identify any cat you see in the future as a cat. 

HTTP  Hyper Text Transfer Protocol - The protocol of the World Wide Web. 

HTTP message The message sent back and forward from HTTP server to client. 

HTTP request 
The HTTP message sent to a web server asking for a particular resource from the server, 
such as a web page. 

HTTP Session 
The collection of HTTP messages exchanged between server and client during one clients 
active session. 

Hyper-plane 
a plane of seperation through data points in d-dimensional space, a 3d hyperplane is a 
plane, a 2d hyperplane is a line. 

IDS Intrusion Detection System - System used to detect intruders to a computer system 

IP Spoofing 
Where an IP packet appears to have been dispatched from a different host from the one it 
was actually dispatched from. 

javacc 
The java compiler compiler - given a grammar in ebnf style notation will generate an 
appropriate parser 

JPCap  A packet capture library for Java. 
Linearly 
Separable 

Where there exists a single hyper-plane of seperation between data points in d 
dimensional space. 

Misuse 
detection model 

Where a system is trained with a number of instances of misuse, the system will then 
detect whether new data is an instance of misuse, by determing its similarity to the 
instances of misuse. 

Packet Sniffer A program which intercepts data packets on a computer network. 

Promiscuous 
A class of learning algorithm where the weights are adjusted according the known ideal 
outcomes of the input sequence. 

Proxy server A server that makes connections to other hosts on behalf of a client. 
Supervised 
Learning 

A form of learning for Neural Networks, where the Neural Network is adjusted precisely 
due to the error of its outputs. 

Tcpdump Tcpdump is a popular Unix program for dumping network traffic. 

The Service  The same as “The System” 

The System  
The product that is being developed, i.e. an intrusion detection system using the anomaly 
based model with a neural network analysis engine. 

Weight matrix  
In neural networks, the internal set of weights, which describe the input/output mapping 
of the network. 
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10.5   User Manual 

10.5.1  Installation 

 
Installation of the system requires the following system capabilities; 
 

• Java Software Development Kit Version 2 or above. 
• The libpcap for UNIX or winpcap for Windows environment. 
• The JPCap library – the libpcap interface to java. 
• A 486 or above preferably running Linux, MS Windows is ok. 
• An Ethernet Card connected to an Ethernet Network. 
• If the system is to be deployed as part of a firewall, a second Ethernet Card is 

required. 
 
To install the system then follow these simple instructions; 
 

1. Set up your java system (follow instructions which come with java). 
2. Set up libpcap/winpcap (follow instruction which come with these). 
3. Unzip the file webids.zip into the directory you wish to deploy the system.  We 

recommend /usr/sbin/.  Make sure the classpath has been set to this directory. 
4. The system is now ready for training. 

 

10.5.2 Configuring using the WiComponentFactory class 

 
The WiComponentFactory class contains a number of methods which return the correct 
objects for the rest of the system.  A list of the available EvReaders and AeAnalysers are 
available for you to choose; 
 
In the method makeAnalyser the following analysers can be used (AeAnalyserDump) is used 
here. 
 
        // uncomment if you want an MLP Neural Network analyser 
     //return aemlp; 
     // uncomment if you want the PCA Neural Network 
     //return aepca; 
     // uncomment if you want the MLP with PCA pre-processor 
     //return aepcamlp; 
     // uncomment if you would like the group occurence analyser. 
     //return aegc; 
     // uncomment if you want the dump analyser. 
     return aedump; 

In the method makeReader the following readers can be used; 
 
      // uncomment if you wish to use a TCP/IP socket 
      return  new EvReaderSocket(); 
      // uncomment if you want to read from text files. 
      //return new EvReaderText(); 
      // uncomment if you want to read raw packets from the ethernet card. 
      //return new EvReaderJPCap(); 
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10.5.3 Collecting the training data 

 
To collect the training data, you must first configure the system to use the correct EvReader 
and AeAnalyser.  Edit the WiComponentFactory class by un-commenting the 
AeAnalyserDump analyser.  The EvReader class you use depends on where the data is to be 
collected from. 
 
By default the system dumps the HTTPRequest strings into the file aedump.log.  This may be 
changed by adding the filename where you wish to dump the requests to in the constructor of 
the object; 
 
AeAnalyser aedump = new AeAnalyserDump(filename); 
 

 
To begin collecting the data, at the prompt type; 
 
tsunx%java WebIDS.WiOpenLive 
 
This will begin capturing the data and writing to the specified file and to the console.  The 
program will run until the original source you are reading from returns or you type ^C. 
 

10.5.4 Training 

 
1. The training phase is easy, first open up WiComponentFactory and select the 

analysers and readers you wish to use. 
2. Then create a directory by the name of the site you want to train, e.g. if you want to 

train the system on a site called trends.com we would call the directory Trends. 
3. Then create two sub directories, one called normal and one called anomalous. 
4. Copy the trace data you have collected into the normal and anomalous sub directories 

as required. 
5. Then at the prompt type; tsunx%java.WebIDS.TrainEnv 

 
This will provide statistics for later analysis and drop them to various files.  Look in the 
source of the individual analysers to discover the format of the statistics produced. 

10.5.5  Testing 

 
Tests can be run as though the system is in a live state, except a set of marked dump files 
should be used.  This will generate a load of logs, as though the system was being attacked 
which you can analyse and determine the performance of the system. 
 

10.5.6  Deploying 

 
1. The system can be deployed by simply configuring the WiComponentFactory class. 
2. Then type at the prompt; tsunx%java WebIDS.OpenLive 


